Data Science for Social Good: A Fellowship

Training Aspiring Data Scientists in Chicago


By Juan-Pablo Velez

The Fellowship

As technology penetrates further into everyday life, we’re creating lots of data. Businesses are scrambling to find data scientists to make sense of all this data and turn it into better decisions.

Businesses aren’t alone. Data science could transform how governments and nonprofits tackle society’s problems. The problem is, most governments and nonprofits simply don’t know what’s possible yet. There are too few data scientists out there and too many spending their days optimizing ads instead of bettering lives. To make real impact with data, we need to work on high-impact projects that show these organizations the power of analytics. And we need to expose data scientists to the problems that really matter.

DSSG_BW_Cropped2That’s exactly why we’re doing the Eric and Wendy Schmidt Data Science for Social Good summer fellowship at the University of Chicago. The program is led by Rayid Ghani, former chief data scientist for the 2012 Obama campaign, and is funded by Google Chairman Eric Schmidt.

We’ve brought three dozen aspiring data scientists from all over the world to Chicago to spend a summer working on data science projects with social impact. The fellows are working closely with governments and nonprofits (including the City of Chicago, the Chicago Transit Authority, and the Nurse-Family Partnership) to take on real-world problems in education, health, energy, transportation, and more. (To read up on our project, check out or to get involved, go to

DSSG_BW_Cropped1bLots of folks have been asking about how we’re training data scientists.

Data scientists are a hybrid group with computer science, statistics, machine learning, data mining, and database skills. These skills take years to learn and there’s no way to teach all of them during a few weeks. Instead of starting from scratch, we decided to start with students in computational and quantitative fields – folks that already have some of these skills and use them daily in an academic setting. And we gave them the opportunity to apply their abilities to solve real-world problems and to pick up the skills they’re missing.

Applied science

There’s a learning curve, of course. But we think the best way to learn any applied science is to get your hands dirty. That’s why we spent the past couple of months scoping and prepping analytics projects with governments and nonprofit organizations for fellows to dig into.

Working on real projects is the only way to pick up the practical skills that round out the data science skill set: understanding a new domain, turning a vague problem into one that can be solved using data science tools, and building solutions that get used.

Some our fellows excel at creating algorithms that learn from data. Others are great at analyzing social networks, parsing natural language, or writing software.

But nobody can do everything. So we built diverse teams for each project.

This setup presented us with two challenges:

  • Effective teams require close collaboration.
  • To bridge the diversity of fellow backgrounds, we needed a common toolbox.

So we invited our friends from Software Carpentry, a nonprofit which teaches scientists to code, to run a tech bootcamp for our fellows. 

Collaboration tools

To get fellows working together, instructor Elliott Hauser introduced them to git and github, tools which make it easy to share code and collaborate. Though popular in the world of software engineering, few fellows had used them before. Students often use subversion or cvs for version control.


Eliott also got fellows pair programming, where two people code together on one computer.

“Individually, our knowledge is like swiss cheese. But collectively, we know all these different things we can share,” says fellow Skyler Whorton. “It’s a lot more beneficial than taking individual classes.”

Common toolkit

Every computational or quantitative field has its favorite tools. Our fellows are familiar with dozens of technologies:

To give everyone a lingua franca, we did workshops on python and R. As a general purpose programming language, python is useful for dealing with data. (Click here for a good overview of its strengths for data science.) R is the go-to free tool for statisticians, and has tons of advanced statistical models, machine learning algorithms, and data visualization libraries. We focused on using python for data analysis. Although most fellows were familiar with python…

python-survey…not all of them had used numpy and pandas, powerful libraries for scientific computing.

python-tools-surveyFellows were also exposed to ggplot2, a library for creating beautiful data graphics.

ggplot-chartInstead of tailoring the sessions to different ability levels, we experimented with giving everyone a shared experience. This approach had its downsides:

“We all come from so many different backgrounds and levels of knowledge that sometimes it felt like not everyone was getting same amount out of it,” says fellow Breanna Miller. “But I think trying to lay the groundwork so we’re all on the same page was really helpful.”

Of course, nobody learns a new tool in a day. The point was to give fellows a whirlwind overview of the tools available to them, so they can go deep on the ones they find useful over the course of the summer.


Editor’s Note: This post includes content previously published at the Data Science for Social Good blog. Also to learn more about the fellows, please visit here.

O’Reilly Strata Conference — Strata brings together the leading minds in data science and big data — decision makers and practitioners driving the future of their businesses and technologies. Get the skills, tools, and strategies you need to make data work.

Strata Rx Health Data Conference: September 25-27 | Boston, MA
Strata + Hadoop World: October 28-30 | New York, NY
Strata in London: November 15-17 | London, England

tags: , ,