I, Cyborg

Being better cyborgs may make us — paradoxically — more human.

There is an existential unease lying at the root of the Internet of Things — a sense that we may emerge not less than human, certainly, but other than human.

Kelsey Breseman

Kelsey Breseman, engineer at Technical Machine.

Well, not to worry. As Kelsey Breseman, engineer at Technical Machine, points out, we don’t need to fret about becoming cyborgs. We’re already cyborgs: biological matrices augmented by wirelessly connected silicon arrays of various configurations. The problem is that we’re pretty clunky as cyborgs go. We rely on screens and mobile devices to extend our powers beyond the biological. That leads to everything from atrophying social skills as face-to-face interactions decline to fatal encounters with garbage trucks as we wander, texting and oblivious, into traffic.

So, if we’re going to be cyborgs, argues Breseman, let’s be competent, sophisticated cyborgs. For one thing, it’s now in our ability to upgrade beyond the screen. For another, being better cyborgs may make us — paradoxically — more human.

“I’m really concerned about how we integrate human beings into the growing web of technology,” says Breseman, who will speak at O’Reilly’s upcoming Solid conference in San Francisco in May. “It’s easy to get caught up in the ‘cool new thing’ mentality, but you can end up with a situation where the point for the technology is the technology, not the human being using it. It becomes closed rather than inclusive — an ‘app developers developing apps for app developers to develop apps’ kind of thing.”

Those concerns have led Breseman and her colleagues at Technical Machine to the development of the Tessel: an open-source Arduino-style microcontroller that runs JavaScript and allows hardware project prototyping. And not, Breseman emphasizes, the mere prototyping of ‘cool new things’ — rather, the prototyping of things that will connect people to the emerging Internet of Things in ways that have nothing to do with screens or smart phones.

“I’m not talking about smart watches or smart clothing,” explains Breseman. “In a way, they’re already passé. The product line hasn’t caught up with the technology. Think about epidermal circuits — you apply them to your skin in the same way you apply a temporary tattoo. They’ve been around for a couple of years. Something like that has so many potential applications — take the Quantified Self movement, for example. Smart micro devices attached right to the skin would make everything now in use for Quantified Self seem antiquated, trivial.”

Breseman looks to a visionary of the past to extrapolate the future: “In the late 1980s, Mark Weiser coined the term ‘ubiquitous computing‘ to describe a society where computers were so common, so omnipresent, that people would ultimately stop interfacing with them,” Breseman says. “In other words, computers would be everywhere, embedded in the environment. You wouldn’t rely on a specific device for information. The data would be available to you on an ongoing basis, through a variety of non-intrusive — even invisible — sources.”

Weiser described such an era as “… the age of calm technology, when technology recedes into the background of our lives…” That trope — calm technology — is extremely appealing, says Breseman.

“We could stop interacting with our devices, stop staring at screens, and start looking at each other, start talking to each other again,” she says. “I’d find that tremendously exciting.”

Breseman is concerned that the Internet of Things is seen only as a new and shiny buzz phrase. “We should be looking at it as a way to address our needs as human beings,” she says, “to connect people to the Internet more elegantly, not just as a source for more toys. Yes, we are now dependent on information technology. It has expanded our lives, and we don’t want to give it up. But we’re not applying it very well. We could do it so much better.”

Part of the problem has been the bifurcation of engineering into software and hardware camps, she says. Software engineers type into screens, and hardware engineers design physical things, and there have been few — if any — places that the twain have met. The two disciplines are poised to merge in the Internet of Things — but it won’t be an easy melding, Breseman allows. Each field carves different neural pathways, inculcates different values.

“Because of that, it has been really hard to figure out things that let people engage with the Internet in a physical sense,” Breseman says. “When we were designing Tessel, we discovered how hugely difficult it is to make an interactive Internet device.”

Still, Tessel and devices like it ultimately will become the machine tools of the Internet of Everything: the forges and lathes where the new infrastructure is built. That’s what Breseman hopes, anyway.

“What we would like,” she muses, “is for people to figure out their needs first and then order Tessels rather than the other way around. By that I mean you should first determine why and how connecting to the Internet physically would augment your life, make it better. Then get a Tessel to help you with your prototypes. We’ll see more and better products that way, and it keeps the emphasis where it belongs — on human beings, not the devices.”


If you are interested in the collision of hardware and software, and other aspects of the convergence of physical and digital worlds, subscribe to the free Solid Newsletter.

tags: ,