Four short links: 10 March 2016

Cognitivist and Behaviourist AI, Math and Social Computing, A/B Testing Stats, and Rat Cyborgs are Smarter

  1. Crossword-Solving Neural NetworksHill describes recent progress in learning-based AI systems in terms of behaviourism and cognitivism: two movements in psychology that effect how one views learning and education. Behaviourism, as the name implies, looks at behaviour without looking at what the brain and neurons are doing, while cognitivism looks at the mental processes that underlie behaviour. Deep learning systems like the one built by Hill and his colleagues reflect a cognitivist approach, but for a system to have something approaching human intelligence, it would have to have a little of both. “Our system can’t go too far beyond the dictionary data on which it was trained, but the ways in which it can are interesting, and make it a surprisingly robust question and answer system – and quite good at solving crossword puzzles,” said Hill. While it was not built with the purpose of solving crossword puzzles, the researchers found that it actually performed better than commercially-available products that are specifically engineered for the task.
  2. Mathematical Foundations for Social Computing (PDF) — collection of pointers to existing research in social computing and some open challenges for work to be done. Consider situations where a highly structured decision must be made. Some examples are making budgets, assigning water resources, and setting tax rates. […] One promising candidate is “Knapsack Voting.” […] This captures most budgeting processes — the set of chosen budget items must fit under a spending limit, while maximizing societal value. Goel et al. prove that asking users to compare projects in terms of “value for money” or asking them to choose an entire budget results in provably better properties than using the more traditional approaches of approval or rank-choice voting.
  3. Power, Minimal Detectable Effect, and Bucket Size Estimation in A/B Tests (Twitter) — This post describes how Twitter’s A/B testing framework, DDG, addresses one of the most common questions we hear from experimenters, product managers, and engineers: how many users do we need to sample in order to run an informative experiment?
  4. Intelligence-Augmented Rat Cyborgs in Maze Solving (PLoS) — We compare the performance of maze solving by computer, by individual rats, and by computer-aided rats (i.e. rat cyborgs). They were asked to find their way from a constant entrance to a constant exit in 14 diverse mazes. Performance of maze solving was measured by steps, coverage rates, and time spent. The experimental results with six rats and their intelligence-augmented rat cyborgs show that rat cyborgs have the best performance in escaping from mazes. These results provide a proof-of-principle demonstration for cyborg intelligence. In addition, our novel cyborg intelligent system (rat cyborg) has great potential in various applications, such as search and rescue in complex terrains.
See more editions of Four Short Links...
tags: , , , , , , , , , , ,

Get Four Short Links in Your Inbox

Sign up to receive Nat’s eclectic collection of curated links every weekday.