Mike Loukides

Mike Loukides is Vice President of Content Strategy for O'Reilly Media, Inc. He's edited many highly regarded books on technical subjects that don't involve Windows programming. He's particularly interested in programming languages, Unix and what passes for Unix these days, and system and network administration. Mike is the author of System Performance Tuning", and a coauthor of "Unix Power Tools." Most recently, he's been fooling around with data and data analysis, languages like R, Mathematica, and Octave, and thinking about how to make books social.

Toward an open Internet of Things

Vendors, take note: we will not build the Internet of Things without open standards.

In a couple of posts and articles, we’ve nibbled around the notion of standards, interoperability, and the Internet of Things (or the Internet of Everything, or the Industrial Internet, or whatever you want to call it). It’s time to say it loud and clear: we won’t build the Internet of Things without open standards.

What’s important about the IoT typically isn’t what any single device can do. The magic happens when multiple devices start interacting with each other. Nicholas Negroponte rightly criticizes the flood of boring Internet-enabled devices: an oven that can be controlled by your phone, a washing machines that texts you when it’s done, and so on. An oven gets interesting when it detects the chicken you put in it, and sets itself accordingly. A washing machine gets interesting if it can detect the clothes you’re putting into it and automatically determine what cycle to run. That requires standards for how the washer communicates with the washed. It’s meaningless if every clothing manufacturer implements a different, proprietary standard for NFC-enabled tags.

We’re already seeing this in lighting: there are several manufacturers of smart network-enabled light bulbs, but as far as I can tell, each one is controlled by a vendor-specific app. And I can think of nothing worse for the future of home lighting than having to remember whether the lights in the bedroom were made by Sylvania or Philips before I can turn them off. Read more…

Comments: 6

Biomimicry in the real world

There's good reason to believe nature has clues about how to do a good job — can it also help with web designs?

FestoRoboticBird

Festo’s Robotic Bird. Photo by Mike Loukides.

A couple of years ago, I visited the World Science Festival in New York and saw Festo’s robotic bird. It was amazing. I’ve seen things that looked more or less like a bird, and that flew, but clearly weren’t flying like a bird. An airplane has a body, has wings, and flies, but you wouldn’t mistake it for a bird. This was different: it looked like a giant seagull, with head and tail movements that were clearly modelled on a living bird’s.

Since then, Festo has built a robotic kangaroo; based on work they started in 2010, they have a robotic elephant’s trunk that learns, a robotic jellyfish, and no doubt many other animals that I haven’t yet seen.

Read more…

Comments: 2

Announcing BioCoder issue 3

Advances in biology and biotechnology are driving us in exciting new directions — be part of the revolution!

We’re excited about the third issue of BioCoder, O’Reilly’s newsletter about the revolution in biology and biotechnology. In the first article of our new issue, Ryan Bethencourt asks the question “What does Biotechnology Want?” Playing with Kevin Kelly’s ideas about how technological development drives human development, Bethencourt asks about the directions in which biotechnology is driving us. We’re looking for a new future with significant advances in agriculture, food, health, environmental protection, and more.

That future will be ours — if we choose to make it. Bethencourt’s argument (and Kelly’s) is that we can’t not choose to make it. Yes, there are plenty of obstacles: the limits to our understanding of biology and genetics, the inadequate tools we have for doing research, the research institutions themselves, and even fear of the future. We’ll overcome these obstacles; indeed, if Bethencourt is right, and biology is our destiny, we have no choice but to overcome these obstacles. The only question is whether you’re part of the revolution or not.
Read more…

Comment

The backlash against big data, continued

Yawn. Yet another article trashing “big data,” this time an op-ed in the Times. This one is better than most, and ends with the truism that data isn’t a silver bullet. It certainly isn’t.

I’ll spare you all the links (most of which are much less insightful than the Times piece), but the backlash against “big data” is clearly in full swing. I wrote about this more than a year ago, in my piece on data skepticism: data is heading into the trough of a hype curve, driven by overly aggressive marketing, promises that can’t be kept, and spurious claims that, if you have enough data, correlation is as good as causation. It isn’t; it never was; it never will be. The paradox of data is that the more data you have, the more spurious correlations will show up. Good data scientists understand that. Poor ones don’t.

It’s very easy to say that “big data is dead” while you’re using Google Maps to navigate downtown Boston. It’s easy to say that “big data is dead” while Google Now or Siri is telling you that you need to leave 20 minutes early for an appointment because of traffic. And it’s easy to say that “big data is dead” while you’re using Google, or Bing, or DuckDuckGo to find material to help you write an article claiming that big data is dead.

Read more…

Comment: 1

Distributed science

In the future, we will solve biological problems by running experiments in parallel.

ScienceHack2014

Participants at #ScienceHack 2014, Synbiota’s Open Distributed Genetic Engineering event. Photo by Madison Matthews, courtesy of Synbiota.

In my post on biohacking and bioterrorism, I briefly mentioned the possibility of vaccines and other treatments developed outside of institutional research. That may be far-fetched, and I certainly hope we’re never in a situation where DIY treatments are the only ones available. But it is worth looking at how biologists outside of medical institutions are transforming research.

Perhaps the most ambitious project right now is Synbiota’s #ScienceHack. They are organizing a large number of volunteer groups to experiment with techniques to produce the compound Violacein. Violacein is potentially useful as an anti-cancer and anti-dysentery drug, but currently costs $356,000 per gram to produce. This price makes research (to say nothing of therapeutic use) impossible. However, it’s possible that bacteria can be genetically engineered to produce Violacein much more efficiently and cheaply. That’s what the #ScienceHack experiment is about: the groups will be trying to design DNA that can be inserted into E. coli bacteria to make it produce Violacein at a fraction of the cost. Read more…

Comment

Full-stack developers

Developers who understand the whole stack are going to build better applications.

Large tree with branches. Photo by Alex, used under a Creative Commons license

Some see the full-stack developer as a unicorn, but it’s starting to look more like a tree, with tooling, cloud services, design, data, and networking added.

Since Facebook’s Carlos Bueno wrote the canonical article about the full stack, there has been no shortage of posts trying to define it. For a time, Facebook allegedly only hired “full-stack developers.” That probably wasn’t quite true, even if they thought it was. And some posts really push “full-stack” developer into Unicorn territory: Laurence Gellert writes that it “goes beyond being a senior engineer,” and details everything he thinks a full-stack developer should be familiar with, most of which doesn’t involve coding. Read more…

Comment: 1

Biohacking and the problem of bioterrorism

Natural bioterrorism might be the bigger threat, and the value of citizens educated in biosciences can't be overstated.

You don’t get very far discussing synthetic biology and biohacking before someone asks about bioterrorism. So, let’s meet the monster head-on.

I won’t downplay the possibility of a bioterror attack. It’s already happened. The Anthrax-contaminated letters that were sent to political figures just after 9/11 were certainly an instance of bioterrorism. Fortunately (for everyone but the victims), they only resulted in five deaths, not thousands. Since then, there have been a few “copycat” crimes, though using a harmless white powder rather than Anthrax spores.

While I see bioterror in the future as a certainty, I don’t believe it will come from a hackerspace. The 2001 attacks are instructive: the spores were traced to a U.S. biodefense laboratory. Whether or not you believe Bruce Ivins, the lead suspect, was guilty, it’s clear that the Anthrax spores were developed by professionals and could not have been developed outside of a professional setting. That’s what I expect for future attacks: the biological materials, whether spores, viruses, or bacteria, will come from a research laboratory, produced with government funding. Whether they’re stolen from a U.S. lab or produced overseas: take your pick. They won’t come from the hackerspace down the street. Read more…

Comments: 3

The backlash against big data, continued

Ignore the hype. Learn to be a data skeptic.

Yawn. Yet another article trashing “big data,” this time an op-ed in the Times. This one is better than most, and ends with the truism that data isn’t a silver bullet. It certainly isn’t.

I’ll spare you all the links (most of which are much less insightful than the Times piece), but the backlash against “big data” is clearly in full swing. I wrote about this more than a year ago, in my piece on data skepticism: data is heading into the trough of a hype curve, driven by overly aggressive marketing, promises that can’t be kept, and spurious claims that, if you have enough data, correlation is as good as causation. It isn’t; it never was; it never will be. The paradox of data is that the more data you have, the more spurious correlations will show up. Good data scientists understand that. Poor ones don’t.

It’s very easy to say that “big data is dead” while you’re using Google Maps to navigate downtown Boston. It’s easy to say that “big data is dead” while Google Now or Siri is telling you that you need to leave 20 minutes early for an appointment because of traffic. And it’s easy to say that “big data is dead” while you’re using Google, or Bing, or DuckDuckGo to find material to help you write an article claiming that big data is dead. Read more…

Comments: 6

Wearing the future

Current wearable computing technology is just scratching the surface — the really interesting tech has yet to be invented.

In an interview at SXSW, Google’s Sundar Pichai said something about wearables that I’ve been waiting to hear. Wearables aren’t about Google Glass; they aren’t about smart watches; they’re much, much more, and these technologies are only scratching the surface.

I’ve tweaked Apple a couple of times for their inability to deliver a watch, despite years of leaks and rumors. I suspect that products from competitors have forced them to pivot a few times, rethinking and delaying their product. But the bottom line is that I don’t care; I don’t wear a watch, haven’t for a long time, and I’m not about to start. Just not interested.

I’m more interested in Glass, but I’ve been amazed at how few people are listening to what Google has said about it: it’s an experiment. It’s not the endpoint, not the product. Given the excitement it has produced, Google would be foolish not to sell it. But really: it’s ugly, it’s a prototype, it’s a mockup. Five years from now, will we all be walking around with Google Glass hanging from designer frames? I doubt it. And I bet Pichai, Brin, and Page doubt it, too. It’s an experiment; it will show us what’s interesting, and point toward what to build next. It’s not the end result. Read more…

Comments: 4

Academic biology and its discontents

Disaffected grad students and postdocs increasingly turn to DIYbio to do work that makes a difference.

When we started BioCoder, we assumed that we were addressing the DIYbio community: interested amateur hobbyists and experimenters without much formal background in biology, who were learning and working in independent hackerspaces.

A couple of conversations have made me question that assumption — not that DIYbio exists; it’s clearly a healthy and growing movement, with new labs and hackerspaces starting in most major cities. But there’s another group mixed in with the amateurs, with a distinctly different set of capabilities and goals. DIYbio doesn’t mean exactly what we thought it did.

That group is what I broadly call “disaffected grad students and postdocs.” They’ve got training, loads of it. But they’ve spent the last few years working in a laboratory under a faculty member, furthering that faculty member’s agenda. They have their own ideas and their own research projects, but they can’t work on them within the context of academic biology. They’re funded by a grant, and the grant will only pay for certain things. And, as Anthony Di Franco points out in “Superseding Institutions in Science and Medicine” (in the current issue of BioCoder), grants are primarily given to people who already know what they’re going to find, and that is not how you get truly innovative and creative research. Read more…

Comments: 2