New scalable solutions for data analysis with R

Addressing in-memory limitations and scalability issues of R.

The R programming language is the most popular statistical software in use today by data scientists, according to the 2013 Rexer Analytics Data Miner survey. One of the main drawbacks of vanilla R is the inability to scale and handle extremely large datasets because by default, R programs are executed in a single thread, and the data being used must be stored completely in RAM. These barriers present a problem for data analysis on massive datasets. For example, the R installation and administration manual suggests using data structures no larger than 10-20% of a computer’s available RAM. Moreover, high-level languages such as R or Matlab incur significant memory overhead because they use temporary copies instead of referencing existing objects.

One potential forthcoming solution to this issue could come from Teradata’s upcoming product, Teradata Aster R, which runs on the Teradata Aster Discovery Platform. It aims to facilitate the distribution of data analysis over a cluster of machines and to overcome one-node memory limitations in R applications. Read more…

Comments: 2