"data scientists" entries

Embracing failure and learning from the Imposter Syndrome

What you miss with a "get it right the first time" mentality


Download our updated Women in Data report, which features four new profiles of women across the European Union. You can also pick-up a copy at Strata + Hadoop World London, where Alice Zheng will lead a session on Deploying Machine Learning in Production.

Lately, there has been a slew of media coverage about the Imposter Syndrome. Many columnists, bloggers, and public speakers have spoken or written about their own struggles with the Imposter Syndrome. And original psychological research on the Imposter Syndrome has found that out of every five successful people, two consider themselves a fraud.

I’m certainly no stranger to the sinking feeling of being out of place. During college and graduate school, it often seemed like everyone else around me was sailing through to the finish line, while I alone lumbered with the weight of programming projects and mathematical proofs. This led to an ongoing self-debate about my choice of a major and profession. One day, I noticed myself reading the same sentence over and over again in a textbook; my eyes were looking at the text, but my mind was saying, “Why aren’t you getting this yet? It’s so simple. Everybody else gets it. What’s wrong with you?”

When I look back upon those years, I have two thoughts: 1. That was hard. 2. What a waste of perfectly good brain cells! I could have done so many cool things if I had not spent all that time doubting myself.

But one can’t simply snap out of the Imposter Syndrome. It has a variety of causes, and it’s sticky. I was brought up with the idea of holding myself to a high standard, to measure my own progress against others’ achievements. Falling short of expectations is supposed to be a great motivator for action…or is it? Read more…

Comments: 2

How to implement a security data lake

Practical tips for centralizing security data.

Information security has been dealing with terabytes of data for more than a decade — almost two. The benefits of having more data available spans many use cases, from forensic investigations to pro-actively finding anomalies and stopping adversaries before they cause harm.

But let’s be realistic. You probably have numerous repositories for your security data. Your Security Information and Event Management (SIEM) solution doesn’t scale to the volumes of data that you would really like to collect. This, in turn, makes it hard to use all of your data for any kind of analytics. It’s likely that your tools have to operate on multiple, disconnected data stores that have very different capabilities for data access and analysis. Even worse, during an incident, how many different consoles do you have to touch before you get the complete picture of what has happened? I would guess probably at least four (I would have said 42, but that seemed a bit excessive).

When talking to your peers about this problem, do they tell you to implement Hadoop to deal with the huge data volumes? But what does that really mean — is Hadoop really the solution? After all, Hadoop is a pretty complex ecosystem of tools that requires skilled and expensive people to implement and maintain. Read more…


Coming full circle with Bigtable and HBase

The O'Reilly Data Show Podcast: Michael Stack on HBase past, present, and future.


Subscribe to the O’Reilly Data Show to explore the opportunities and techniques driving big data and data science.

At least once a year, I sit down with Michael Stack, engineer at Cloudera, to get an update on Apache HBase and the annual user conference, HBasecon. Stack has a great perspective, as he has been part of HBase since its inception. As former project leader, he remains a key contributor and evangelist, and one of the organizers of HBasecon.

In the beginning: Search and Bigtable

During the latest episode of the O’Reilly Data Show Podcast, I decided to broaden our conversation to include the beginnings of the very popular Apache HBase project. Stack reminded me that in the early days much of the big data community in the SF Bay Area was centered around search technologies, such as HBase. In particular, HBase was inspired by work out of Google (Bigtable), and the early engineers had ties to projects out of the Internet Archive:

At the time, I was working at the Internet Archive, and I was working on crawlers and search. The Bigtable paper looked really interesting to us because the archive, as you know, we used to host — or still do — the Wayback Machine. The Wayback Machine is a picture of the Web that goes back to 1998, and you could look at the Web at any particular time. What pages looked liked at a particular time. Bigtable was very interesting at the Internet Archive because it had this time dimension.

A group had started up to talk about the possibility of implementing a Bigtable clone. It was centered at a place called Powerset, a startup that was in San Francisco back then. That was about doing a search, so I went and talked to them. They said, ‘Come on over and we’ll make a space for doing a Bigtable clone.’ They had a very intricate search pipeline, and it was based on early Amazon AWS, and every time they started up their pipeline, they’d get a phone call from Amazon saying, ‘Please stop whatever it is you’re doing.’ … The first engineer would be a fellow called Jim Kellerman. The actual first 30 classes came from Mike Cafarella. He was instrumental in getting the first versions of Hadoop going. He was hanging around Apache Nutch at the time. … Doug [Cutting] used to work at the Internet archive, and the first actual versions of Hadoop were run on racks at the Internet archive. Doug was working on fulltext search. Then he moved on to go to Yahoo, to work on Hadoop full time.

Read more…


Squaring big data with database queries

Integrating open source tools into a data warehouse has its advantages.


Although next-gen big data tools such as Hadoop, Spark, and MongoDB are finding more and more uses, most organizations need to maintain data in traditional relational stores as well. Deriving the benefits of both key/value stores and relational databases takes a lot of juggling. Three basic strategies are currently in use.

  • Double up on your data storage. Log everything in your fast key/value repository and duplicate part of it (or perform some reductions and store the results) in your relational data warehouse.
  • Store data primarily in a relational data warehouse, and use extract, transform, and load (ETL) tools to make it available for analytics. These tools run a fine-toothed comb through data to perform string manipulation, remove outlier values, etc. and produce a data set in the format required by data processing tools.
  • Put each type of data into the repository best suited to it––relational, Hadoop, etc.––but run queries between the repositories and return results from one repository to another for post-processing.

The appeal of the first is a large-scale simplicity, in that it uses well-understood systems in parallel. The second brings the familiarity of relational databases for business users to access. This article focuses on the third solution, which has advantages over the others: it avoids the redundancy of the first solution and is much easier to design and maintain than the second. I’ll describe how it is accomplished by Teradata, through its appliances and cloud solutions, but the building blocks are standard, open source tools such as Hive and HCatalog, so this strategy can be implemented by anyone. Read more…


The log: The lifeblood of your data pipeline

Why every data pipeline should have a Unified Logging Layer.

The value of log data for business is unimpeachable. On every level of the organization, the question, “How are we doing?” is answered, ultimately, by log data. Error logs tell developers what went wrong in their applications. User event logs give product managers insights on usage. If the CEO has a question about the next quarter’s revenue forecast, the answer ultimately comes from payment/CRM logs. In this post, I explore the ideal frameworks for collecting and parsing logs.

Apache Kafka Architect Jay Kreps wrote a wonderfully crisp survey on log data. He begins with the simple question of “What is the log?” and elucidates its key role in thinking about data pipelines. Jay’s piece focuses mostly on storing and processing log data. Here, I focus on the steps before storing and processing.

Changing the way we think about log data


The old paradigm — machines to humans, and the new — machines to machines. Image courtesy of Kiyoto Tamura.

Over the last decade, the primary consumer of log data shifted from humans to machines.

Software engineers still read logs, especially when their software behaves in an unexpected manner. However, in terms of “bytes processed,” humans account for a tiny fraction of the total consumption. Much of today’s “big data” is some form of log data, and businesses run tens of thousands of servers to parse and mine these logs to gain competitive edge. Read more…


Investigating Spark’s performance

A deep dive into performance bottlenecks with Spark PMC member Kay Ousterhout.

Ousterhout_WebcastFor many who use and deploy Apache Spark, knowing how to find critical bottlenecks is extremely important. In a recent O’Reilly webcast, Making Sense of Spark Performance, Spark committer and PMC member Kay Ousterhout gave a brief overview of how Spark works, and dove into how she measured performance bottlenecks using new metrics, including block-time analysis. Ousterhout walked through high-level takeaways from her in-depth analysis of several workloads, and offered a live demo of a new performance analysis tool and explained how you can use it to improve your Spark performance.

Her research uncovered surprising insights into Spark’s performance on two benchmarks (TPC-DS and the Big Data Benchmark), and one production workload. As part of our overall series of webcasts on big data, data science, and engineering, this webcast debunked commonly held ideas surrounding network performance, showing that CPU — not I/O — is often a critical bottleneck, and demonstrated how to identify and fix stragglers.

Network performance is almost irrelevant

While there’s been a lot of research work on performance — mainly surrounding the issues of whether to cache input data in-memory or on machine, scheduling, straggler tasks, and network performance — there haven’t been comprehensive studies into what’s most important to performance overall. This is where Ousterhout’s research comes in — taking on what she refers to as “community dogma,” beginning with the idea that network and disk I/O are major bottlenecks. Read more…


Zeta Architecture: Hexagon is the new circle

An enterprise architecture solution for scale and efficiency.


Data processing in the enterprise goes very swiftly from “good enough” to “we need to be faster!” as expectations grow. The Zeta Architecture is an enterprise architecture that enables simplified business processes and defines a scalable way for increasing the speed of integrating data into the business. Following a bit of history and a description of the architecture, I’ll use Google as an example and look at the way the company deploys technologies for Gmail.

Origin story and motivation

I’ve worked on a variety of different information systems over my career, each with their own classes of challenge. The most interesting from a capacity perspective was for a company that delivers digital advertising. The biggest technical problems in that industry flow from the sheer volume of transactions that occur on a daily basis. Traffic flows in all hours of the day, but there are certainly peak periods, which means all planning must revolve around the capacity during the peak hours. This solution space isn’t altogether different than that of Amazon; they had to build their infrastructure to handle massive loads of peak traffic. Both Amazon and digital advertising, incidentally, have a Black Friday spike.

Many different architectural ideas came to my mind while I was in digital advertising. Real-time performance tracking of the advertising platform was one such thing. This was well before real-time became a hot buzzword in the technology industry. There was a point in time where this digital advertising company was “satisfied” with, or perhaps tolerated, having a two-to-three-hour delay between making changes to the system and having complete insight into the effects of the changes. After nearly a year at this company, I was finally able to get a large architectural change made to streamline log collection and management. Before the implementation started, I told everyone involved what would happen. Although this approach would enable the business to see the performance within approximately 5-10 minutes of the time a change was made, that this would not be good enough after people got a feel for what real-time could deliver. Since people didn’t have that taste in their mouths, they wouldn’t yet support going straight to real-time for this information. The implementation of this architecture was in place a few months after I departed the company for a new opportunity. The implementation worked great, and after about three months of experience with the new architecture, my former colleagues contacted me and told me they were looking to re-architect the entire solution to go to real time. Read more…


The VR growth cycle: What’s different this time around

A chat with Tony Parisi on where we are with VR, where we need to go, and why we're going to get there this time.


Consumer virtual reality (VR) is in the midst of a dizzying and exhilarating upswing. A new breed of systems, pioneered by Oculus and centered on head-worn displays with breakthrough quality, are minting believers — whether investors, developers, journalists, or early-adopting consumers. Major new hardware announcements and releases are occurring on a regular basis, game studios and production houses big and small are tossing their hats into the ring, and ambitious startups are getting funded to stake out many different application domains. Is it a boom, a bubble, or the birth of a new computing platform?

Underneath this fundamental quandary, there are many basic questions that remain unresolved: Which hardware and software platforms will dominate? What input and touch feedback technologies will prove themselves? What are the design and artistic principles in this medium? What role will standards play, who will develop them, and when? The list goes on.

For many of these questions, we’ll need to wait a bit longer for answers to emerge; like smartphones in 2007, we can only speculate about, say, the user interface conventions that will emerge as designers grapple with this new paradigm. But on other issues, there is some wisdom to be gleaned. After all, VR has been around for a long time, and there are some poor souls who have been working in the mines all along. Read more…

Comments: 5

Building big data systems in academia and industry

The O'Reilly Data Show Podcast: Mikio Braun on stream processing, academic research, and training.

Mikio Braun is a machine learning researcher who also enjoys software engineering. We first met when he co-founded a real-time analytics company called streamdrill. Since then, I’ve always had great conversations with him on many topics in the data space. He gave one of the best-attended sessions at Strata + Hadoop World in Barcelona last year on some of his work at streamdrill.

I recently sat down with Braun for the latest episode of the O’Reilly Data Show Podcast, and we talked about machine learning, stream processing and analytics, his recent foray into data science training, and academia versus industry (his interests are a bit on the “applied” side, but he enjoys both).


An example of a big data solution. Source: Mikio Braun, used with permission.

Read more…


A real-time tool for a real-time problem

Using VoltDB and the Lambda Architecture to locate abnormal behavior.


Subscriber Identity Module box (SIMbox) fraud is a type of telecommunications fraud where users avoid an international outbound-calls charge by redirecting the call through voice over IP to a SIM in the country where the destination is located. This is an issue we helped a client address at Wise Athena.

Taking on this type of problem requires a stream-based analysis of the Call Detail Record (CDR) logs, which are typically generated quickly. Detecting this kind of activity requires in-memory computations of streaming data. You might also need to scale horizontally.

We recently evaluated the use of VoltDB together with our cognitive analytics and machine-learning system to analyze CDRs and provide accurate and fast SIMbox fraud detection. At the beginning, we used batch processing to detect SIMbox fraud, but the response time took too long, so we switched to a technology that allows in-memory computations in order to reach the desired time constraints.

VoltDB’s in-memory distributed database provides transactions at streaming speed in a fast environment. It can support millions of small transactions per second. It also allows streaming aggregation and fast counters over incoming data. These attributes allowed us to develop a real-time analytics layer on top of VoltDB. Read more…

Comments: 9