"frictionless manufacturing" entries

Products are now platforms

With remote connectivity and remote updates, companies are able to iterate and add value to products customers already own.

Editor’s note: this is an excerpt from our recent report, When Hardware Meets Software, by Mike Barlow. The report looks into the new hardware movement, telling its story through the people who are building it. For more stories on the evolving relationship between software and hardware, download the free report.

The Internet of Things doesn’t presage a return to the world of smoke-belching factories and floors covered with sawdust. But it does signify that change is afoot for any business or activity related to the information technology or communications industries.

“Not everyone will become a hardware designer,” says Joi Ito, director of the MIT Media Lab. But many students, software engineers, and entrepreneurs will see the advantages of learning how to work with hardware. “It’s never too late to learn this stuff,” says Ito, “if you decide that you want to do it.”

At minimum, software engineers should learn as much about design and manufacturing as possible. “Buy an Arduino and start building. Everything you need to learn is on the web,” urges Jordan Husney, an avid hardware hacker who serves as strategy director at Undercurrent, an organizational transformation firm and digital think tank in lower Manhattan.

In the same way that software people will have to reconfigure their modes of thinking, hardware people will need to learn new technical skills and new ways of looking at problems, says Husney. “They will have to become more comfortable with uncertainty occurring later and later in the process,” he says. “Hardware engineers will keep things in the realm of bits (as opposed to committing them to atoms) by sharing designs using digital collaboration and simulation tools virtually, while testing multiple physical prototypes. I think we’re going to see the supply chain start to shift around these concepts.” Read more…

Biology as the next hardware

Why DNA is on the horizon of the design world.

DNA by John Goode, on Flickr

I’ve spent the last couple of years arguing that the barriers between software and the physical world are falling. The barriers between software and the living world are next.

At our Solid Conference last May, Carl Bass, Autodesk’s CEO, described the coming of generative design. Massive computing power, along with frictionless translation between digital and physical through devices like 3D scanners and CNC machines, will radically change the way we design the world around us. Instead of prototyping five versions of a chair through trial and error, you can use a computer to prototype and test a billion versions in a few hours, then fabricate it immediately. That scenario isn’t far off, Bass suggested, and it arises from a fluid relationship between real and virtual.

Biology is headed down the same path: with tools on both the input and output sides getting easier to use, materials getting easier to make, and plenty of computation in the middle, it’ll become the next way to translate between physical and digital. (Excitement has built to the degree that Solid co-chair Joi Ito suggested we change the name of our conference to “Solid and Squishy.”)

I spoke with Andrew Hessel, a distinguished research scientist in Autodesk’s Bio/Nano/Programmable Matter Group, about the promise of synthetic biology (and why Autodesk is interested in it). Hessel says the next generation of synthetic biology will be brought about by a blend of physical and virtual systems that make experimental iteration faster and processes more reliable. Read more…

Hardware start-ups now look a lot like software start-ups

Joi Ito on the evolution of manufacturing.

Editor’s note: this interview with Joichi Ito is an excerpt from our recent report, When Hardware Meets Software, by Mike Barlow. The report looks into the new hardware movement, telling its story through the people who are building it. For more stories on the evolving relationship between software and hardware, download the free report.

Joichi Ito is the director of the MIT Media Lab. Ito, who is also co-chair of the O’Reilly Solid Conference, recalls sending a group of MIT students to Shenzhen so they could see for themselves how manufacturing is evolving. “Once they got their heads around the processes in a deep way, they understood the huge differences between prototyping and manufacturing. Design for prototyping and design for manufacturing are fundamentally different,” says Ito. The problem in today’s world, according to Ito, is that “we have abstracted industrial design to the point where we think that we can just throw designs over a wall” and somehow they will magically reappear as finished products.

The trip to Shenzhen helped the students understand the manufacturing process from start to finish. “In Shenzhen, they have a $12 phone. It’s amazing. It has no screws holding it together. It’s clearly designed to be as cheap as possible. It’s also clearly designed by someone who really understands manufacturing and understands what consumers want.”

Ito also sees a significant difference between what’s happening on the factory floors in Shenzhen and the maker movement. “We’re not talking about low-volume, DIY manufacturing,” he says. Instead, Ito’s students are working through the problems and challenges of a real, live paradigm shift — the kind of gut-wrenching upheaval described in Thomas S. Kuhn’s seminal book, The Structure of Scientific Revolutions. From Kuhn’s point of view, a paradigm shift isn’t a cause for celebration or blithe headlines — it’s a sharp and unexpected blow that topples old theories, wrecks careers, and sweeps aside entire fields of knowledge. Read more…

What you need to know for the hardware-software convergence

Core competencies and essential reading from hardware, software, manufacturing, and the IoT.

As I noted in “Physical and virtual are blurring together,” we now have hardware that acts like software, and software that’s capable of dealing with the complex subtleties of the physical world. So, what must the innovator, the creator, the executive, the researcher, and the artist do to embrace this convergence of hardware and software?

At its core, this is about a shift from discipline toward intent. Individuals and institutions — whether they’re huge enterprises, small start-ups, or nonprofits — must be competent in several disciplines that increasingly overlap, and should be prepared to solve problems by working fluidly across disciplines.

To use Joi Ito’s example, someone who wants to develop a synthetic eye might begin to approach the problem with biology, or electronics, or software, or (most likely) all three together. Many problems can be solved somewhere in a large multidimensional envelope that trades off design, mechanics, electronics, software, biology, and business models. Experts might still do the best work in each discipline, but everyone needs to know enough about all of them to know where to position a project between them.

Below you’ll find the core competencies in the intersection between software and the physical world, and our favorite books and resources for each one.

Electronics for physical-digital applications

  • Practical Electronics, by John M. Hughes: To know what’s possible and where to start, it’s essential to understand both the analog and digital sides of electronics. This is O’Reilly’s authoritative introduction to both analog and digital electronics, with information on circuit design, common parts and techniques, and microcontrollers.
  • Raspberry Pi Cookbook, by Simon Monk: The Raspberry Pi is rapidly becoming the standard embedded computing platform for prototyping and experimentation, with enough computing power to run familiar interpreted programming languages and widely supported operating systems.
  • Arduino Cookbook, by Michael Margolis: The Arduino microcontroller offers a fluid interface between digital and physical; it’s highly extensible and accessible to people with no prior experience in either electronics or code.

Read more…

Hardware is an elusive constraint on user experience

Andrew “bunnie” Huang on understanding the interplay between software, hardware, and the existing supply chain.

Editor’s note: this interview with Andrew “bunnie” Huang is an excerpt from our recent report, When Hardware Meets Software, by Mike Barlow. The report looks into the new hardware movement, telling its story through the people who are building it. For more stories on the evolving relationship between software and hardware, download the free report.

Andrew “bunnie” Huang has a Ph.D. in electrical engineering from MIT, but he is most famous for reverse engineering the Xbox, establishing his reputation as one of the world’s greatest hardware hackers. He sees an evolving relationship between hardware and software.

“It used to be that products were limited solely by the capability of their hardware. Early radios, for example, had mechanical buttons that acted directly on the physics of the receiver,” says Huang. “As hardware becomes more capable, the user experience of the hardware is more dictated by the software that runs on it. Now that hardware is ridiculously capable — you basically have supercomputers in your pockets that cost next to nothing — pretty much the entire user experience of the product is dictated by the software. The hardware simply serves as an elusive constraint on the user experience.”

Hardware is “a cage,” says Huang, and good software developers learn to work within the constraints of the hardware. “When I work with programmers on new products, I take the first prototype, put it on the desk and I say, ‘Welcome to your new cage.’ That’s the reality. There’s a hard wall. But we try to build the cage big enough so there are options for programmers. A quad core Android phone with a gigabyte of memory is a pretty big cage. Sometimes when programmers feel constrained, they’re just being lazy. There’s always more than one way to skin a cat in the software world.” Read more…

Physical and virtual are blurring together

Key signals from hardware, software, manufacturing, and the Internet of Things.

Hardware, software, manufacturing, and the Internet of Things

This essay updates a November 2013 article. We’ve expanded it in light of the success of our first Solid conference in May 2014, where we tested many of these ideas, and the announcement of our next Solid conference in June 2015. In addition to this update, you can stay in the loop on the latest developments in the space through our weekly newsletter.

Real and virtual are crashing together. On one side is hardware that acts like software: IP-addressable, programmable with high-level procedural languages and APIs, able to be stitched into loosely coupled systems — the mashups of a new era. On the other is software that’s newly capable of dealing with the complex subtleties of the physical world — ingesting huge amounts of data, learning from it, and making decisions in real time.

The result is an entirely new medium that’s just beginning to emerge. We can see it in Ars Electronica Futurelab’s Spaxels, which are LED-equipped quadcopters that make up a drone swarm to render a three-dimensional pixel field; in Baxter, which layers emotive software onto an industrial robot so that anyone can operate it safely and efficiently; in OpenXC, which gives even hobbyist-level programmers access to the software in their cars; and in SmartThings, which ties web services to light switches.

The new medium is something broader than terms like “Internet of Things,” “Industrial Internet,” or “connected devices” suggest. It’s an entirely new discipline that’s being built by software developers, roboticists, manufacturers, hardware engineers, artists, and designers. Read more…

Welcome to the age of indie hardware

The shifting economics around manufacturing is fueling an indie hardware movement.

Editor’s note: this is an excerpt from our new report When Hardware Meets Software — download the free report here.

All trends rise and fall. A new generation of smart techies has emerged to challenge the false duality of the hardware versus software paradigm. The spiritual heirs of the ham radio operators and homemade rocket enthusiasts of the 1940s and 50s have coalesced to form a maker culture that is quietly subverting the standard industrial model of product design and development.

Even if they aren’t the actual grandsons and granddaughters of the original hobbyists, they apply the same kind of grit, smarts and do-it-yourself confidence as earlier generations of inventors and tinkerers who labored in basements, backyards, and garages all over the world.

Unlike their predecessors, whose audiences were limited mostly to friends and family members, the new generation is sharing its inventiveness globally and selling gadgets through maker-friendly e-commerce markets such as Tindie, Make, and Grand St. Read more…