"Industrial Internet" entries

Oobleck security

What is the security model for a world filled with sensors?

I’ve been thinking (and writing) a lot lately about the intersection of hardware and software, and how standing at that crossroads does not fit neatly into our mental models of how to approach the world. Previously, there was hardware and there was software, and the two didn’t really mix. When trying to describe my thinking to a colleague at work, the best way to describe the world was that it’s becoming “oobleck,” the mixture of cornstarch and water that isn’t quite a solid but isn’t quite a liquid, named after the Dr. Seuss book Bartholomew and the Oobleck.  (If you want to know how to make it, check out this video.)

One of the reasons I liked the metaphor of oobleck for the melding of hardware and software is that it can rapidly change on you when you’re not looking. It pours like a liquid, but it can “snap” like a solid. If you place the material under stress, as might happen if you set it on a speaker cone, it changes state and acts much more like a weird solid.

This “phase change” effect may also occur as we connect highly specialized embedded computers (really, “sensors”) to the Internet. As Bruce Schneier recently observed, patching embedded systems is hard. As if on cue, a security software company published a report that thousands of TVs and refrigerators may have been compromised to send spam. Embedded systems are easy to overlook from a security perspective because at the dawn of the Internet, security was relatively easy: install a firewall to sit between your network and the Internet, and carefully monitor all connections in and out of the network. Security was spliced into the protocol stack at the network layer. One of my earliest projects in understanding the network layer was working with early versions of Linux to configure a firewall with the then-new technology of address translation. As a result, my early career took place in and around network firewalls. Read more…

Comments: 3

More 1876 than 1995

Jim Stogdill explains how the Internet of Things is more on par with the Industrial Revolution than the digital revolution.

Corliss_Engine

Photo: Wikipedia Commons. Corliss Engine.

Philadelphia’s Centennial Exposition of 1876 was America’s first World’s Fair, and was ostensibly held to mark the nation’s 100th birthday. But it heralded the future as much as it celebrated the past, showcasing the country’s strongest suit: technology.

The centerpiece of the Expo was a gigantic Corliss engine, the apotheosis of 40 years of steam technology. Thirty percent more efficient than standard steam engines of the day, it powered virtually every industrial exhibit at the exposition via a maze of belts, pulleys, and shafts. Visitors were stunned that the gigantic apparatus was supervised by a single attendant, who spent much of his time reading newspapers.

“This exposition was attended by 10 million people at a time when travel was slow and difficult, and it changed the world,” observes Jim Stogdill, general manager of Radar at O’Reilly Media, and general manager of O’Reilly’s upcoming Internet-of-Things-related conference, Solid. Read more…

Comments: 7

Why Solid, why now

We are on the cusp of something as dramatic as the Industrial Revolution.

A few years ago at OSCON, one of the tutorials demonstrated how to click a virtual light switch in Second Life and have a real desk lamp light up in the room. Looking back, it was rather trivial, but it was striking at the time to see software people taking an interest in the “real world.” And what better metaphor for the collision of virtual and real than a connection between Second Life and the Portland Convention Center?

In December 2012, our Radar team was meeting in Sebastopol and we were talking about trends in robotics, Maker DIY, Internet of Things, wearables, smart grid, industrial Internet, advanced manufacturing, frictionless supply chain, etc. We were trying to figure out where to put our focus among all of these trends when suddenly it was obvious (at least to Mike Loukides, who pointed it out): they are all more alike than different, and we could focus on all of them by looking at the relationships among them. The Solid program was conceived that day. Read more…

Comments: 2
Four short links: 5 February 2014

Four short links: 5 February 2014

Graph Drawing, DARPA Open Source, Quantified Vehicle, and IoT Growth

  1. sigma.js — Javascript graph-drawing library (node-edge graphs, not charts).
  2. DARPA Open Catalog — all the open source published by DARPA. Sweet!
  3. Quantified Vehicle Meetup — Boston meetup around intelligent automotive tech including on-board diagnostics, protocols, APIs, analytics, telematics, apps, software and devices.
  4. AT&T See Future In Industrial Internet — partnering with GE, M2M-related customers increased by more than 38% last year. (via Jim Stogdill)
Comment: 1

The Industrial Internet of Things

The opportunity no one's talking about.

WeishauptBurner

Photo: Kipp Bradford. This industrial burner from Weishaupt churns through 40 million BTUs per hour of fuel.

A few days ago, a company called Echelon caused a stir when it released a new product called IzoT. You may never have heard of Echelon; for most of us, they are merely a part of the invisible glue that connects modern life. But more than 100 million products — from street lights to gas pumps to HVAC systems — use Echelon technology for connectivity. So, for many electrical engineers, Echelon’s products are a big deal. Thus, when Echelon began touting IzoT as the future of the Industrial Internet of Things (IIoT), it was bound to get some attention.

Admittedly, the Internet of Things (IoT) is all the buzz right now. Echelon, like everyone else, is trying to capture some of that mindshare for their products. In this case, the product is a proprietary system of chips, protocols, and interfaces for enabling the IoT on industrial devices. But what struck me and my colleagues was how really outdated this approach seems, and how far it misses the point of the emerging IoT. Read more…

Comments: 13

Drone on

UAVs will rule the skies (unless the FAA says otherwise).

Jeff Bezos’ recent demonstration of a drone aircraft simulating delivery of an Amazon parcel was more stunt than technological breakthrough. We aren’t there yet. Yes, such things may well come to pass, but there are obstacles aplenty to overcome — not so much engineering snags, but cultural and regulatory issues.

The first widely publicized application of modern drone aircraft — dropping Hellfire missiles on suspected terrorists — greatly skewed perceptions of the technology. On the one hand, the sophistication of such unmanned systems generated admiration from technophiles (and also average citizens who saw them as valuable adjuncts in the war against terrorism). On the other, the significant civilian casualties that were collateral to some strikes have engendered outrage. Further, the fear that drones could be used for domestic spying has ratcheted up our paranoia, particularly in the wake of Edward Snowden’s revelations of National Security Agency overreach. Read more…

Comment

The new bot on the block

How robotics are changing everything

Fukushima changed robotics. More precisely, it changed the way the Japanese view robotics. And given the historic preeminence of the Japanese in robotic technology, that shift is resonating through the entire sector.

Before the catastrophic earthquake and tsunami of 2011, the Japanese were focused on “companion” robots, says Rodney Brooks, a former Panasonic Professor of Robotics at MIT, the founder and former technical officer of IRobot, and the founder, chairman and CTO of Rethink Robotics. The goal, says Brooks, was making robots that were analogues of human beings — constructs that could engage with people on a meaningful, emotional level. Cuteness was emphasized: a cybernetic, if much smarter, equivalent of Hello Kitty, seemed the paradigm.

But the multiple core meltdown at the Fukushima Daiichi nuclear complex following the 2011 tsunami changed that focus abruptly.

Read more…

Comments: 5

Software, hardware, everywhere

Software and hardware are moving together, and the combined result is a new medium.

Real and virtual are crashing together. On one side is hardware that acts like software: IP-addressable, controllable with JavaScript APIs, able to be stitched into loosely-coupled systems—the mashups of a new era. On the other is software that’s newly capable of dealing with the complex subtleties of the physical world—ingesting huge amounts of data, learning from it, and making decisions in real time.

The result is an entirely new medium that’s just beginning to emerge. We can see it in Ars Electronica Futurelab’s Spaxels, which use drones to render a three-dimensional pixel field; in Baxter, which layers emotive software onto an industrial robot so that anyone can operate it safely and efficiently; in OpenXC, which gives even hobbyist-level programmers access to the software in their cars; in SmartThings, which ties Web services to light switches.

The new medium is something broader than terms like “Internet of Things,” “Industrial Internet,” or “connected devices” suggest. It’s an entirely new discipline that’s being built by software developers, roboticists, manufacturers, hardware engineers, artists, and designers. Read more…

Comment: 1

The Myth of the Private API

The Fundamental Interconnectedness of Things

A little over a week ago, I wrote about how the authentication model for an unpublished Tesla REST API was architecturally flawed because it failed to take basic precautions against the sharing of credentials with third-parties common to most REST-based services these days. Since its publication, the main criticism of the article centered around the fact that the API is neither a published API nor has it been advertised as being meant for third-party consumption.

The adding of value to devices and services with or without the knowledge/permission of their creators is an integral part of the Internet of Things. These days, people expect an API around their devices. They will discover any APIs and add value to the device/service—even if the task requires a little reverse engineering work. A responsible creator of a device or service in today’s world defined by the Internet of Things must therefore do the following things—always:

  1. Give it a public API
  2. Protect any internal communications so they can’t be reverse engineered
  3. Protect any public communications so that they don’t put end users at risk when they leverage third-party devices and services

Read more…

Comments: 5

If This/Then That (IFTTT) and the Belkin WeMo

How I used an Internet service to automate home lighting without installing any software.

Like most good technologists, I am lazy.  In practice, this sometimes means that I will work quite hard with a computer to automate a task that, for all intents and purposes, just isn’t that hard.  In fits and starts for the past 10 years, I have been automating my house in various ways.  It makes my life easier when I am at home, though it does mean that friends who watch my house when I’m gone need to be briefed on how to use it.  If you are expecting to come into my house and use light switches and the TV as you do every place else, well, that’s why you need a personalized orientation to the house.

In this post, I’ll talk briefly about one of the most basic automation tasks I’ve carried out, which is about how the lights in my house are controlled.

The humble light switch was invented in the late 19th century, with the “modern” toggle switch following in the early 20th century.  The toggle switch has not changed in about 100 years because it does exactly what is needed and is well understood.  The only disadvantage to the toggle switch is that you have to touch it to operate it, and that means getting off the couch. Read more…

Comment: 1