"open source biology" entries

Open source lessons for synthetic biology

What bio can learn from the open source work of Tesla, Google, and Red Hat.

Faraday_in_his_laboratory_at_the_Royal_Institution,_London._Wellcome_M0004625

When building a biotech start-up, there is a certain inevitability to every conversation you will have. For investors, accelerators, academics, friends, baristas, the first two questions will be: “what do you want to do?” and “have you got a patent yet?”

Almost everything revolves around getting IP protection in place, and patent lawyer meetings are usually the first sign that your spin-off is on the way. But what if there was a way to avoid the patent dance, relying instead on implementation? It seems somewhat utopian, but there is a precedent in the technology world: open source.

What is open source? Essentially, any software in which the source code (the underlying program) is available to anyone else to modify, distribute, etc. This means that, unlike typical proprietary development processes, it lends itself to collaborative development between larger groups, often spread out across large distances. From humble beginnings, the open source movement has developed to the point of providing operating systems (e.g. Linux), Internet browsers (Firefox), 3D modelling software (Blender), monetary alternatives (Bitcoin), and even integrating automation systems for your home (OpenHab).

Money, money, money…

The obvious question is then, “OK, but how do they make money?” The answer to this lies not in attempting to profit from the software code itself, but rather from its implementation as well as the applications which are built on top of it. For the implementation side, take Red Hat Inc., a multinational software company in the S&P 500 with a market cap of $14.2 billion, who produce the extremely popular Red Hat Enterprise Linux distribution. Although open source and freely available, Red Hat makes its money by selling a thoroughly bug-tested operating system and then contracting to provide support for 10 years. Thus, businesses are not buying the code; they are buying a rapid response to any problems.

Read more…

Open source biology

Joe Schloendorn is creating and distributing plasmids that can freely be reproduced — a huge breakthrough for DIY bio.

Photo by mira66 on Flickr, used under a Creative Commons license.

At O’Reilly, we’ve long been supporters of the open source movement — perhaps not with the religious fervor of some, but with a deep appreciation for how open source has transformed the computing industry over the last three decades.

We also have a deep appreciation for the dangers that closed source, restrictive licenses, patent trolling, and other technocratic evils pose to areas that are just opening up — biology, in particular. So it is with great interest that I read Open Source Biotech Consumables in the latest issue of BioCoder.

I’m not going to rehash the article; you should read it yourself. The basic argument is that some proteins used in research cost thousands of dollars per milligram. They’re easily reproducible (we’re talking DNA, after all), but frequently tied up with restrictive licenses. In addition, many of the vendors will only sell to research institutions and large corporations, not home labs or small community labs. So, Joe Schloendorn is creating and distributing plasmids that can freely be reproduced. That in itself is a huge breakthrough.

Read more…