"patient data" entries

Commodity data analytics for health care

Predixion service could signal a trend for smaller health facilities.

Analytics are expensive and labor intensive; we need them to be routine and ubiquitous. I complained earlier this year that analytics are hard for health care providers to muster because there’s a shortage of analysts and because every data-driven decision takes huge expertise.

Currently, only major health care institutions such as Geisinger, the Mayo Clinic, and Kaiser Permanente incorporate analytics into day-to-day decisions. Research facilities employ analytics teams for clinical research, but perhaps not so much for day-to-day operations. Large health care providers can afford departments of analysts, but most facilities — including those forming accountable care organizations — cannot.

Imagine that you are running a large hospital and are awake nights worrying about the Medicare penalty for readmitting patients within 30 days of their discharge. Now imagine you have access to analytics that can identify about 40 measures that combine to predict a readmission, and a convenient interface is available to tell clinicians in a simple way which patients are most at risk of readmission. Better still, the interface suggests specific interventions to reduce readmissions risk: giving the patient a 30-day supply of medication, arranging transportation to rehab appointments, etc. Read more…