"Solid" entries

Welcome back, Weblandians

The collision of software and hardware has broken down the barriers between the digital and physical worlds.

Note: this post is a slightly hydrated version of my Solid keynote. To get it out in 10 minutes, I had to remove a few ideas and streamline it a bit for oral delivery; this is the full version.

In 1995, Nicolas Negroponte told us to forget about the atoms and focus on the bits. I think “being digital” was probably an intentional overstatement, a provocation to shove our thinking off of its metastable emphasis on the physical, to open us up to the power of the purely digital. And maybe it worked too well, because a lot of us spent two decades plumbing every possibility of digital-only technologies and digital-only businesses.

Bot-Dolly_Iris_Demo

Solid attendees watch a Bot & Dolly demonstration of their Iris robot. Photo by O’Reilly.

By then, technology had bifurcated into two streams of hardware and software that rarely converged outside of the data center, and for most of us, unless we were with a firm the size of Sony, with a huge addressable market, hardware was simply outside the scope of our entrepreneurial ambitions. It was our platform, but rarely our product. The physical world was for other people to worry about. We had become by then the engineers of the ephemeral, the plastic, and the immaterial. And in the depth of our immersion into the virtual and digital, we became, it seems, citizens of Weblandia (and congregants of the Church of Disruption).

But pendulums always swing back. Read more…

Comments: 2

Why PayPal jumped the software-hardware gap

A software company reaches into the physical world with hardware.

PayPal is a software company, but when I met with Josh Bleecher Snyder, director of software engineering at PayPal, it was to talk about hardware. He’s leading the development of Beacon, PayPal’s new hands-free payment platform. At its heart is a finger-size stick that uses Bluetooth Low Energy to connect with mobile phones and confirm identity.

Paypal’s move into hardware extends its software into the physical world — a key idea behind our Solid Conference. What was once a system confined to screens and keyboards is now part of a new set of interactions in brick-and-mortar stores.

Beacon is part of a vast PayPal stack, and Bleecher Snyder’s team solved problems with a blend of hardware and software thinking — writing code in Go that was efficient enough for Beacon’s processor to be underclocked and avoid overheating, and to anticipate attacks on PayPal’s service that might come from compromised hardware. His entire system hews to PayPal’s “don’t be creepy” mantra by quickly and permanently discarding data that isn’t used in transactions. Read more…

Comment

The IT-OT convergence

The key to brilliant factories lies in the combination of information technology and operations systems, says GE's CIO.

Solid is about the intersection of real and virtual — the idea that, through sensors, networks, and intelligent machines, information can move fluidly between software and the physical world. It’s easy to see the technical implications of that intersection — thermostats that adjust themselves and cars that can drive autonomously — but there’s also a crucial management implication as well. Just as design can be automated and optimized if it’s encapsulated in software, a company’s operations can be made much more efficient if they’re modeled digitally before being executed.

Jamie Miller, senior vice president and chief information officer at General Electric, calls that “IT meets OT” and sees the combination changing her industry. “When you take these two disciplines that used to be separate and combine them, you can start to approach engineering and design differently, operate workflow differently, make factories brilliant.” It’s a philosophy that GE uses internally and builds into the products it sells.

Companies like GE have a lot of data — digital designs for manufactured parts, human-resources records, work orders from customers, service manuals — and this data tends to converge on human operators. A field technician might receive a work order to fix a wind turbine, visit the machine, consult documentation, call a colleague for specialized advice, order a replacement part, and finally make the repair. Read more…

Comments: 3

The automation of design

Physical and biological design are about to get much more digital, says Autodesk’s CTO.

Autodesk_titanium_chair

A titanium chair designed through iterative generation and optimization by Autodesk software. Photo courtesy of Autodesk and The Living.

One of the core ideas behind our Solid Conference is that software can replace physical complexity, and that it’s getting easier for it to do so because the relationship between the physical and virtual worlds is becoming more fluid. Input tools like 3D scanners and computer vision software, and output tools like CNC machines and 3D printers are essentially translators between digital and physical. They make it possible to extract information from physical objects, compute on it, transform it, combine it with other data, and then “rematerialize” it.

I recently spoke with Autodesk CTO Jeff Kowalski about this convergence between physical and digital, and its impact on design. In his view, computers are about to go from mere drafting tables to full partners in the design process. They’ll automate the tedious cycle of trial and error, and leave designers to guide aesthetics and experience. “Decades ago, someone came up with the term ‘computer-aided design,’ but what we’ve had up to now is really computer-aided documentation,” he says. “Design has been accomplished solely in the head of the designer, and then the computer is used to document the outcome.” Read more…

Comment: 1

A Solid preview

Design in the hardware era, how big companies and small companies should interact, and the importance of data privacy

Our new Solid conference is less than a week away. To tide you over, here’s a Solid video from a combined SFIoT, SF Hardware, and Sensored (SF) Meetup.

On stage, along with myself, are three Solid people: Rachel Kalmar, data scientist at Misfit Wearables and member of our program committee; Mike Kuniavsky, principal scientist at PARC and speaker on Functional Forms at Solid; and Dan Saffer, creative director at Smart Design, who will speak about microinteractions (and has written an O’Reilly book about microinteractions as well). Read more…

Comment

Life, death, and autonomous vehicles

Self-driving cars will make decisions — and act — faster than humans facing the same dangerous situations.

1966PlymouthFuryIII

Plymouth Fury III. Photo by Infrogmation, on Wikimedia Commons.

There’s a steadily increasing drumbeat of articles and Tweets about the ethics of autonomous vehicles: if an autonomous vehicle is going to crash, should it kill the passenger in the left seat or the right seat? (I won’t say “driver’s seat,” though these sorts of articles usually do; there isn’t a driver.) Should the car crash into a school bus or run over an old lady on the side of the road?

Frankly, I’m already tired of the discussion. It’s not as if humans don’t already get into situations like this, and make (or not make) decisions. At least, I have. Read more…

Comments: 7

What’s a tech company, anyway?

Talk of the "tech sector" is out of date. Every company is a tech company.

John_Deere_Field_Connect

John Deere’s Field Connect system logs soil moisture data from probes installed in customer fields and transmits the data to a website for customers to access remotely.

Uber has encountered a series of challenges that are notionally unfamiliar to the current generation of tech companies: wrongful-death lawsuits, rent-seeking by an entrenched industry, regulatory scrutiny from local bureaucrats, worker protests. The company admitted to having disrupted a competitor’s operations by calling its cars, then canceling. No matter how explicitly it warns about surge pricing, riders accustomed to a certain way of booking a car ride object.

There’s an established industry that charges people for rides in cars, and it’s been reduced to a set of straightforward points of competition: price, car quality, ease of booking, and — treacherously for Uber and uncharacteristically for “tech companies” in general — the burly and distasteful accumulation of political clout before municipal taxi commissions. Read more…

Comments: 2

It’s time to move to real-time regulation

The Internet of Things allows for real-time data monitoring, which is crucial to regulatory reform.

One under-appreciated aspect of the changing relationship between the material world and software is that material goods can and will fail — sometimes with terrible consequences.

What if government regulations were web-based and mandated inclusion of Internet-of-Things technology that could actually stop a material failure, such as a pipeline rupture or automotive failure, while it was in its earliest stages and hadn’t caused harm? Even more dramatically, what if regulations could even prevent failures from happening at all?

With such a system, we could avoid or minimize disasters — from Malaysia Airlines Flight 370’s disappearance to the auto-safety debacles at GM to a possible leak if the Keystone XL pipeline is built — while the companies using this technology could simultaneously benefit in a variety of profitable ways. Read more…

Comments: 2

9 things to consider before deploying sensors

Defining application requirements for IoT networking standards.

This article is part of a series exploring the role of networking in the Internet of Things.

Each networking technology has very different attributes and capabilities. When evaluating protocols and standards for your IoT project, you’ll need to understand all of the technical and financial requirements underlying your application in order to effectively choose a technology to implement. Let’s take a look at the typical networking requirements in designing solutions for the Internet of Things.

To provide a concrete illustration of the requirements analysis, I will describe a hypothetical building energy management application and outline a comprehensive list of its wireless network requirements. This list of requirements will form a framework for future discussion of the networking technology standards currently on the market.

Read more…

Comment

Most of what we need for smart cities already exists

Culture, play, and an emphasis on fair use will help smart cities take root.

The compelling thing about the emerging Internet of Things, says technologist Tom Armitage, is that you don’t need to reinvent the wheel — or the water and sewage systems, or the electrical and transportation grids. To a large degree, you can create massive connectivity by simple (well, relatively simple) augmentation.

“By overlaying existing infrastructure with intelligent software and sensors, you can turn it into something else and connect it to a larger system,” says Armitage. “Yes, you could simply design and construct an entirely new system, but that’s incredibly expensive, it would take a lot time, and you may lose some things (of cultural or architectural value) that you may want to save. It’s better to adapt existing systems to your goals if you have the technology to do it — and we have it.”

Armitage speaks from direct experience. He was one of the collaborators behind Hello Lamp Post, a 2013 Bristol, England, project aimed at engaging people on a deep and intimate level with the urban landscape. In conjunction with PAN Studio and media artist Gyorgyi Galik, Armitage designed software interfaces for Bristol’s “street furniture” — the eponymous lamp posts, of course, but also manholes, post boxes, telephone poles, traffic bollards, and trash cans. Read more…

Comment: 1