"DJ Patil" entries

Four short links: 17 April 2015

Four short links: 17 April 2015

Distributed SQLite, Communicating Scientists, Learning from Failure, and Cat Convergence

  1. Replicating SQLite using Raft Consensus — clever, he used a consensus algorithm to build a distributed (replicated) SQLite.
  2. When Open Access is the Norm, How do Scientists Communicate? (PLOS) — From interviews I’ve conducted with researchers and software developers who are modeling aspects of modern online collaboration, I’ve highlighted the most useful and reproducible practices. (via Jon Udell)
  3. Meet DJ Patil“It was this kind of moment when you realize: ‘Oh, my gosh, I am that stupid,’” he said.
  4. Interview with Bruce Sterling on the Convergence of Humans and MachinesIf you are a human being, and you are doing computation, you are trying to multiply 17 times five in your head. It feels like thinking. Machines can multiply, too. They must be thinking. They can do math and you can do math. But the math you are doing is not really what cognition is about. Cognition is about stuff like seeing, maneuvering, having wants, desires. Your cat has cognition. Cats cannot multiply 17 times five. They have got their own umwelt (environment). But they are mammalian, you are a mammalian. They are actually a class that includes you. You are much more like your house cat than you are ever going to be like Siri. You and Siri converging, you and your house cat can converge a lot more easily. You can take the imaginary technologies that many post-human enthusiasts have talked about, and you could afflict all of them on a cat. Every one of them would work on a cat. The cat is an ideal laboratory animal for all these transitions and convergences that we want to make for human beings. (via Vaughan Bell)
Comment
Four short links: 10 April 2015

Four short links: 10 April 2015

Graph Algorithm, Touchy Robots, Python Bolt-Ons, and Building Data Products

  1. Exact Maximum Clique for Large or Massive Real Graphs — explanation of how BBMCSP works.
  2. Giving Robots and Prostheses the Human Touchthe team, led by mechanical engineer Veronica J. Santos, is constructing a language of touch that both a computer and a human can understand. The researchers are quantifying this with mechanical touch sensors that interact with objects of various shapes, sizes, and textures. Using an array of instrumentation, Santos’ team is able to translate that interaction into data a computer can understand. The data is used to create a formula or algorithm that gives the computer the ability to identify patterns among the items it has in its library of experiences and something it has never felt before. This research will help the team develop artificial haptic intelligence, which is, essentially, giving robots, as well as prostheses, the “human touch.”
  3. boltons — things in Python that should have been builtins.
  4. Everything We Wish We’d Known About Building Data Products (DJ Patil and RusJan Belkin) — Data is super messy, and data cleanup will always be literally 80% of the work. In other words, data is the problem. […] “If you’re not thinking about how to keep your data clean from the very beginning, you’re fucked. I guarantee it.” […] “Every single company I’ve worked at and talked to has the same problem without a single exception so far — poor data quality, especially tracking data,” he says.“Either there’s incomplete data, missing tracking data, duplicative tracking data.” To solve this problem, you must invest a ton of time and energy monitoring data quality. You need to monitor and alert as carefully as you monitor site SLAs. You need to treat data quality bugs as more than a first priority. Don’t be afraid to fail a deploy if you detect data quality issues.
Comments: 2
Four short links: 19 February 2015

Four short links: 19 February 2015

Magical Interfaces, Automation Tax, Cyber Manhattan Project, and US Chief Data Scientist

  1. MAS S66: Indistinguishable From… Magic as Interface, Technology, and Tradition — MIT course taught by Greg Borenstein and Dan Novy. Further, magic is one of the central metaphors people use to understand the technology we build. From install wizards to voice commands and background daemons, the cultural tropes of magic permeate user interface design. Understanding the traditions and vocabularies behind these tropes can help us produce interfaces that use magic to empower users rather than merely obscuring their function. With a focus on the creation of functional prototypes and practicing real magical crafts, this class combines theatrical illusion, game design, sleight of hand, machine learning, camouflage, and neuroscience to explore how ideas from ancient magic and modern stage illusion can inform cutting edge technology.
  2. Maybe We Need an Automation Tax (RoboHub) — rather than saying “automation is bad,” move on to “how do we help those displaced by automation to retrain?”.
  3. America’s Cyber-Manhattan Project (Wired) — America already has a computer security Manhattan Project. We’ve had it since at least 2001. Like the original, it has been highly classified, spawned huge technological advances in secret, and drawn some of the best minds in the country. We didn’t recognize it before because the project is not aimed at defense, as advocates hoped. Instead, like the original, America’s cyber Manhattan Project is purely offensive. The difference between policemen and soldiers is that one serves justice and the other merely victory.
  4. White House Names DJ Patil First US Chief Data Scientist (Wired) — There is arguably no one better suited to help the country better embrace the relatively new discipline of data science than Patil.
Comment
Four short links: 7 January 2015

Four short links: 7 January 2015

Program Synthesis, Data Culture, Metrics, and Information Biology

  1. Program Synthesis ExplainedThe promise of program synthesis is that programmers can stop telling computers how to do things, and focus instead on telling them what they want to do. Inductive program synthesis tackles this problem with fairly vague specifications and, although many of the algorithms seem intractable, in practice they work remarkably well.
  2. Creating a Data-Driven Culture — new (free!) ebook from Hilary Mason and DJ Patil. The editor of that team is the luckiest human being alive.
  3. Ev Williams on Metrics — a master-class in how to think about and measure what matters. If what you care about — or are trying to report on — is impact on the world, it all gets very slippery. You’re not measuring a rectangle, you’re measuring a multi-dimensional space. You have to accept that things are very imperfectly measured and just try to learn as much as you can from multiple metrics and anecdotes.
  4. Nature, the IT Wizard (Nautilus) — a fun walk through the connections between information theory, computation, and biology.
Comment