FEATURED STORY

Learn a C-style language

Improve your odds with the lingua franca of computing.

tools
You have a lot of choices when you’re picking a programming language to learn. If you look around the web development world, you’ll see a lot of JavaScript. At universities and high schools, you’ll often find Python used as a teaching language. If you go to conferences with language theorists, like Strange Loop, you’ll hear a lot about functional languages, such as Haskell, Scala, and Erlang. This level of choice is good: many languages mean that the overall state of the field is continually evolving, and coming up with new solutions. That choice also leads to a certain amount of confusion regarding what you should learn. It’s not possible to learn every language out there, even if you wanted to. Depending on the area you’re in, the choice of language may be made for you. For the overall health of your career, and to provide you the widest range of future opportunities, the single most useful language-related thing you can do is learn a C-style language.

A boring old C-style language just like millions of developers learned before you, going back to the 1980s and earlier. It’s not flashy, it’s usually not cutting edge, but it is smart. Even if you don’t stick with it, or program in it on a daily basis, having a C-style language in your repertoire is a no-brainer if you want to be taken seriously as a developer.
Read more…

Comments: 2

.NET open source

Microsoft .Net Team Program Manager, Beth Massi, on the open source .NET Core.

wire mesh

You might have heard the news that .NET is open source. In this post I’m going to explain what exactly we open sourced, why we did it, and how you can get involved.

Defining .NET

If you’re not familiar with .NET, it’s a managed execution environment that provides a variety of services to its running applications including things like automatic memory management, type safety, native interop, and multiple modern programming languages that make it easier to build all kinds of apps, for nearly any device, quickly. The first version of .NET was initially released in 2002 and quickly picked up steam in many businesses. Today there are over 1.8 billion active installs of the .NET Framework and 6 million .NET developers in the world.

The .NET Framework consists of these major components: the common language runtime (CLR), which is the execution engine that handles running applications; the .NET Framework Base Class Libraries (BCL), which provides a library of tested, reusable code that developers can call from their own applications; and the managed languages and compilers for C#, F#, and Visual Basic. Application models extend the common libraries of the .NET Framework to provide additional libraries that developers can use to build specific types of applications, like web, desktop, mobile device apps, etc. For more information on all the components in .NET 2015 see: Understanding .NET 2015.

There are multiple implementations of .NET, some from Microsoft and others from other companies or open source projects. In this post, I’ll focus on .NET Core from Microsoft.

Read more…

Comments: 2

The art of design patterns

Communicate more efficiently, concisely, and accurately.

Download a free copy of An Engineering Manager’s Guide to Design Patterns, a brain-friendly report that shows you how object-oriented design patterns are ideal for solving specific problems in application design.

If you haven’t had the pleasure of viewing Hal Abelson & Gerald Sussman’s 1986 MIT introductory computer science course, you owe it to yourself to set aside a few hours to view it. “1986?”, you say — “Could that really be relevant to my work today?” Unless you came through MIT or a similar program that teaches from their seminal book The Structure and Interpretation of Computer Programs, I’d bet you are most likely going to learn a few new things (even if you consider yourself a seasoned software developer).

Play the video, and right away you might be surprised, as Abelson, in the first five minutes of the class, states that not only is computer science not a science, it doesn’t have all that much to do with computers. Rather, Abelson suggests, computer science is more of an engineering discipline, or perhaps even an art; and, rather than being concerned with computers, computer science is more an exercise in creating imperative knowledge and managing complexity.

Anyone who has ever been late on a software development project (who hasn’t?) can relate to this. Software development starts to feel more like an art or craft when the best you can do is roughly estimate the size and scope of a job and then cross your fingers and hope for the best — certainly, it is at times like these when our field doesn’t feel like much of a science. And, for anyone who has worked on a project of moderate size, at some point you find complexity staring you in the face. All too often our first designs, and our code, turn into the dreaded big ball of mud (yes, that is a technical term).
Read more…

Comments: 2

Enterprising open source

Meg Blanchette interviews Continuum's Peter Wang about the growing role of OSS in the enterprise.

jars

If you attend OSCON this year, you may notice a bit more attention paid to the enterprise side of tech. That is on purpose, as we have been noticing the open source and enterprise worlds edging closer and closer. Companies traditionally nervous about open source are either recognizing the inherent value, or their developers are using it and they don’t even realize. Open source is, in turn, seeing the benefits an established company can bring a project and the various opportunities available.

In that spirit, I spoke with Peter Wang, from Continuum Analytics. Continuum is a good example of this new hybrid — offering open source technology, while also having an enterprise side. Here, we discuss the changing landscape and what that can mean for people who embrace change, and for those who don’t.

Read more…

Comments: 2

Static analysis with C#

Complement a good testing program and identify hard-to-find bugs with static analysis.

Static analysis is, quite simply, any analysis you perform on software without actually running it. (Analyzing software as it runs is dynamic analysis.) There are many reasons to do static analysis, but almost all of them boil down to the desire to improve software quality. As a designer of developer tools, improving software quality by any means is keenly important to me.

Let’s consider compiler warnings. They are produced without executing the code, so the compiler is doing static analysis. Their aim is to inform the developer that the code, though legal, is probably wrong. Suppose you were a compiler developer and you wanted to add a new warning; what characteristics must that warning have?

  • There must be some statically identifiable pattern to the suspicious code.
  • The pattern must be common and plausibly written by a developer; developing a warning for a too-rare pattern or completely unrealistic code is effort that could be better spent on other features.
  • The warning must have a low “false positive” rate; a warning must actually identify defective code more than, say, 99% of the time. False positives encourage developers to eliminate the warning by turning the warning off, or worse, by incorrectly changing the code. There must be a way to eliminate the warning without introducing a bug into the code.
  • The pattern must be identified extremely Slowing the build process by anything more than a few percent is unacceptable.

I always recommend that everyone use the strictest warning settings on their compiler, to pay attention to warnings, and to (carefully) fix them all. Even fix the false positives; if the code was weird enough to fool the compiler then it’s weird enough to fool a human, and you don’t want to have “expected” warnings distracting you from actual warnings.
Read more…

Comments: 2

Building applications in Azure

Identifying the key requirements of a web application cloud architecture.

Download a free copy of “Azure for Developers,” an O’Reilly report by experienced .NET developer John Adams that breaks down Microsoft’s Azure platform in plain language, so that you can quickly get up to speed.

One of the most natural uses of the cloud is for web applications. You may already be using virtual machines on your own systems to make deploying your applications easier, either to new hardware or to additional servers. Microsoft Azure uses virtualization too, but it also brings useful benefits that virtualization cannot deliver alone. By hosting your application in the cloud, you can leverage automatic scaling, load balancing, system health monitoring, and logging. You also benefit from the fact that managed cloud platforms help narrow the attack surface of your system by automatically patching the operating system and runtimes and by keeping systems sandboxed. Let’s look at some examples of how to build some common web applications inside of Microsoft Azure.

Online store

Imagine that you work for a retailer who generates a significant amount of revenue through online sales. Imagine also that this retailer has been around for long enough that it already has an established web architecture that runs in a private data center. This retailer has decided that it wants to move to a hosted platform so that it no longer has any data center responsibilities and it can focus on its core business. How do you replatform this web application into Microsoft Azure? Let’s first identify some requirements for this system:

  • It has high utilization and needs to serve a large number of concurrent users without timing out, even during peak hours such as Black Friday sales.
  • It needs to accommodate a wide variety of products in its database that do not necessarily all follow the same schema.
  • It needs a fast and intelligent search bar so that customers can find products easily.
  • It needs to be able to recommend products to customers as they shop to help generate additional revenue.

However these requirements are being met today in the private data center, I can suggest some guidelines on how to reproduce this system in Microsoft Azure so you can boost performance instead of just replicating it. I will take each of these requirements in order and explain how to leverage certain Azure components so that these requirements are properly met.

Read more…

Comments: 2