"Strata SC 2013" entries

On the importance of imagination in data science

Strata Community Profile on Amy Heineike, Director of Mathematics

QuidAmyH_Bio

Amy Heineike

According to Amy Heineike, the Director of Mathematics at Quid, there’s nothing like having a fresh dataset in R and knowing how to use it. “You can add a few lines of code and discover all kinds of interesting information,” Heineike says. “One question leads to another, you get into a flow, and you can have an amazing exploration.”

Heineike started working with data several years ago at a consultancy in London, where “playing around” with data shed light on the impact of social networks on government policies. Part of her job was figuring out what types of data to use in order to find solutions to crucial problems, from public transportation to obesity. Her day-to-day work at Quid entails working with new data sets, prototyping analytics, and collaborating with an engineering team to improve data analysis and bring products into production.

Read more…

Comment

Keep your data science efforts from derailing

Preview of upcoming session at Strata Santa Clara

By Marck Vaisman and Sean Murphy

Is your organization considering embracing data science? If so, we would like to give you some helpful advice on organizational and technical issues to consider before you embark on any initiatives or consider hiring data scientists. Join us, Sean Murphy and Marck Vaisman, two Washington, D.C. based data scientists and founding members of Data Community DC, as we walk you through the trials and tribulations of practicing data scientists at our upcoming talk at Strata.

We will discuss anecdotes and best practices, and finish by presenting the results of a survey we conducted last year to help understand the varieties of people, skills, and experiences that fall under the broad term of “Data Scientist”. We analyzed data from over 250 survey respondents, and are excited to share our findings, which will also be published soon by O’Reilly.

Read more…

Comment

Maps not lists: network graphs for data exploration

Preview of upcoming Strata session on data exploration

Amy Heineike is Director of Mathematics for Quid Inc, where she has been since its inception, prototyping and launching the company’s technology for analyzing document sets. Below is the teaser for her upcoming talk at Strata Santa Clara.

I recently discovered that my favorite map is online. It used to hang on my housemate’s wall in our little house in London back in 2005. At the time I was working to understand how London was evolving and changing, and how different policy or infrastructure changes (a new tube line, land use policy changes) would impact that.

The map was originally published as a center-page pull out from the Guardian, showing the ethnic groups that dominate different neighborhoods across the city. The legend was as long as the image, and the small print labels necessitated standing up close, peering and reading, tracing your finger to discover the Congolese on the West Green Road, our neighbors the Portuguese on the Stockwell Road, or the Tamils in Chessington in the distant south west.

Read more…

Comment

Fruit or mobile device: learning concepts through connections

Preview of insights shared at upcoming session at Strata Santa Clara

Social media gives us the power to share content and engage with a wide range of internet users. As a person or brand, we are often concerned with who we are talking to and how we can better serve our viewers. Traditional demographics such as ‘female’ and ‘25-30’ are no longer sufficient in this arena. For example, Google is having a hard time getting gender and age correct for ad preferences. It is more interesting to observe what content is consumed and how attention changes over time.

Bitly, which is used to shorten and share links, can offer insight into this space. This means the data has an unprecedented view into what people are sharing and has a holistic view of what users are concerned about on the internet.

We use their data to look into how we can define the audience of different content. The simplest example of this is: given a group of users that click on “oreilly.com”, what other websites do they engage with. We now have what bitly calls a co-click graph. Domains are represented as nodes while edges between nodes represent the number of people that have clicked on each domain. A co-click graph can be made to represent any number of attributes, but for now we are going to remain interested in topics and keywords.

ASmithFig1

Read more…

Comment

That’s it — I’m taking my data and going home

We are simply not good at playing with others when it comes to data

Russia’s railway gauge is different from Western Europe’s. At the border of the former Soviet states, the Russian gauge of 1.524m meets the European & American ‘Standard’ gauge of 1.435m. The reasons for this literal disconnect arise from discussions between the Tsar and his War Minister. When asked the most effective way to prevent Russia’s own rail lines being used against them in times of invasion, the Minister suggested a different gauge to prevent supply trains rolling through the border. The artifact of this decision remains visible today at all rail crossings between Poland and Belarus or Slovakia and Ukraine. The rail cars are jacked up at the border, new wheels inserted underneath, and the car lowered again. It is about a 2-4 hour time burn for each crossing.

Per head, per crossing, over 170 years, is a heck of a lot of resource wasted. But to change it would entail changing the rail stock of the entire country and realigning about 225,000 km (140,000 mi) of track.

Talk about technical debt.

Data suffers from a similar disconnect. It really wasn’t until the advent of XML 15 years ago that we had an agreed (but not entirely satisfactory) mechanism for storing arbitrary data structures outside the application layer. This is as much a commentary on our technical priorities as it is a social indictment. We are simply not good at playing with others when it comes to data.

Read more…

Comment

BigData Top 100 Initiative

A Call for Industry-Standard Benchmarks for Big Data Platforms at Strata SC 2013

By Milind Bhandarka, Chaitan Baru, Raghunath Nambiar, Meikel Poess, and Dr. Tilmann Rabl

Big data systems are characterized by their flexibility in processing diverse data genres, such as transaction logs, connection graphs, and natural language text, with algorithms characterized by multiple communication patterns, e.g. scatter-gather, broadcast, multicast, pipelines, and bulk-synchronous. A single benchmark that characterizes a single workload could not be representative of such a multitude of use-cases. However, our systematic study of several use-cases of current big data platforms indicates that most workloads are composed of a common set of stages, which capture the variety of data genres and algorithms commonly used to implement most data-intensive end-to-end workloads. Our upcoming session at Strata SC discusses the BigData Top 100 List, a new community-based initiative for benchmarking big data systems.

Read more…

Comment

Your analytics talent pool is not made up of misanthropes

Tips for interacting with analytics colleagues

To quote Pride and Prejudice, businesses have for many years “labored under the misapprehension” that their analytics talent was made up of misanthropes with neither the will nor the ability to communicate or work with others on strategic or creative business problems. These employees were meant to be kept in the basement out of sight, fed bad pizza, and pumped for spreadsheets to be interpreted in the sunny offices aboveground.

This perception is changing in industry as the big data phenomenon has elevated data science to a C-level priority. Suddenly folks once stereotyped by characters like Milton in Office Space are now “sexy.” The truth is there have always been well-rounded, articulate, friendly analytics professionals (they may just like Battlestar more than you), and now that analytics is an essential business function, personalities of all types are being attracted to practice the discipline.

Read more…

Comments: 5

Communicating data clearly

Preview of Strata Santa Clara 2013 Session

The 2013 Strata Conference in Santa Clara, CA will be my fifth Strata conference. As always, I’m excited to join so many leaders in the data and data viz communities, and I’m honored that I’ll be speaking there.

I will be presenting my tutorial “Communicating Data Clearly” at 9AM on Tuesday, February 26. This talk will cover methods and principles of creating effective graphs, to ensure they are clear, accurate, and make it easier to understand the data. It will also emphasize how to avoid common graphical mistakes. To give you a preview of a few of the topics I will be covering as well as to provide some information to those who cannot attend, I will now link to some of the blog posts I‘ve written for Forbes. I was invited to blog for Forbes at a New York Strata Conference in 2011 so that my relationships with Forbes and Strata are intertwined.

Read more…

Comment

The future of big data with BDAS, the Berkeley Data Analytics Stack

Preview of an upcoming tutorial at Strata Santa Clara 2013

By Andy KonwinskiIon Stoica, and Matei Zaharia

This month at Strata, the U.C. Berkeley AMPLab will be running a full day of big data tutorials.In this post, we present the motivation and vision for the Berkeley Data Analytics Stack (BDAS), and an overview of several BDAS components that we released over the past two years, including Mesos, Spark, Spark Streaming, and Shark.

While batch processing systems like Hadoop MapReduce paved the way for organizations to ask questions about big datasets, they represent only the beginning of what users need to do with big data. More and more, users wish to move from periodically building reports about datasets to continuously using new data to make informed business decisions in real-time. Achieving these goals imposes three key requirements on big data processing:

  • Low latency queries: Interactive ad-hoc queries allows data scientists to find valuable inferences faster, or explore a larger solution space to make better decisions. Furthermore, there is an increasing need for stream processing, as this allows organizations to make decisions in real-time, such as detecting an SLA violation and fixing the problem before the users notice, or deciding what ads to show based on user’s live tweets.
  • Sophisticated analysis: People are increasingly looking to use new state of art algorithms, such as predictive machine learning algorithms, to make better forecasts and decisions.
  • Unification of existing data computation models: Users want to integrate interactive queries, batch, and streaming processing to handle the ever increasing requirements of their processing pipelines. For example, detecting anomalies in user behavior may require (1) stream processing to compare the behavior of users in real-time across different segments (e.g., genre, ages, location, device), (2) interactive queries to detect differences in user’s daily (or weekly) behavior, and (3) batch processing to build sophisticated predictive models.

In response to the above requirements, more than three years ago we began building BDAS.

Read more…

Comment

Public health case study: Tracking zombies and vampires using social media

Preview of Strata Santa Clara 2013 Session

Towards the end of 2012, a battle that the pitted state versus state, father versus son, wife versus Bunco group, dog versus cat, finally reached a truce spawned by the treaty we all sign every fours years known as the presidential election. While the death match between red versus blue states has finally faded from our televisions and twitter feeds, we can now focus on the real issues of the day.

Longer then Romney’s candidacy bid for the white house, there has been a war going on in America, an undeath match of sorts between Zombies and Vampires. Like a flu pandemic sweeping the nation, the undead have been infiltrating our lives in every aspect. What traditionally was only a mild outbreak in October has turned into a year round epidemic that our society cannot seem to shake.

Read more…

Comment