Mike Loukides

Mike Loukides is Vice President of Content Strategy for O'Reilly Media, Inc. He's edited many highly regarded books on technical subjects that don't involve Windows programming. He's particularly interested in programming languages, Unix and what passes for Unix these days, and system and network administration. Mike is the author of System Performance Tuning", and a coauthor of "Unix Power Tools." Most recently, he's been fooling around with data and data analysis, languages like R, Mathematica, and Octave, and thinking about how to make books social.

What is an enterprise, anyway?

However one defines "enterprise," what really matters is an organization's culture.

This post was co-authored by Mike Loukides and Bill Higgins.

Bill Higgins of IBM and I have been working on an article about DevOps in the enterprise. DevOps is mostly closely associated with Internet giants and web startups, but increasingly we are observing companies we lump under the banner of “enterprises” trying — and often struggling — to adopt the sorts of DevOps culture and practices we see at places like Etsy. As we tried to catalog the success and failure patterns of DevOps adoption in the enterprise, we ran into an interesting problem: we couldn’t precisely define what makes a company an enterprise. Without a well understood context, it was hard to diagnose inhibitors or to prescribe any particular advice.

So, we decided to pause our article and turn our minds to the question “What is an enterprise, anyway?” We first tried to define an enterprise based on its attributes, but as you’ll see, these are problematic:

More then N employees
Definitions like this don’t interest us. What changes magically when you cross the line between 999 and 1,000 employees? Or 9,999 and 10,000? Wherever you put the line, it’s arbitrary. I’ll grant that 30-person companies work differently from 10,000 person companies, and that 100-person companies have often adopted the overhead and bureaucracy of 10,000 person companies (not a pretty sight). But drawing an arbitrary line in the sand isn’t helpful.

Read more…

Comments: 7

Shakespeare and the myth of publishing

Reinventing publishing: what can we do now that we're no longer tied to the myth of stable literary objects?

Note: this post started as a Foo Camp 2013 session.

A few weeks ago, Tim O’Reilly sent around a link to Who Edited Shakespeare?, which discussed the editor for the First Folio edition of Shakespeare’s plays. It included a lot of evidence that someone had done a lot of work regularizing spelling and doing other tasks that we’d now assign to a copyeditor or a proofreader, presumably more work than the Folio’s nominal editors, Heminges and Condell, were inclined to do or capable of doing.

It’s an interesting argument that prompted some thoughts about the nature of publishing. The process of editing creates the impression, the mythology, that a carefully crafted, consistent, and stable text exists for these plays, that the plays are static literary objects. We like to think that there is a “good” Shakespeare text, if only we had it: what Shakespeare actually wrote, and what was actually performed on stage. We have a mess of good quarto editions, bad quartos, the First Folio, apocryphal works, and more. Some versions of the plays are significantly longer than others; some scholars believe that we’re missing significant parts of Macbeth (Shakespeare’s shortest tragedy, for which the First Folio is the only source). Perhaps the worst case is Christopher Marlowe’s Doctor Faustus, which is known entirely through two early print editions, one roughly 50% longer than the other.

I’m skeptical about whether the search for a hypothetical authoritative version of Shakespeare’s text is meaningful. Shakespeare’s plays were, first and foremost, plays: they were performances staged before a live audience. If you’ve had any involvement with theater, you can imagine how that goes: “Act III, Scene iv dragged; let’s cut it next time. Act V, Scene i was great, but too short; let’s fill it out some.” The plays, as staged events, were infinitely flexible. In the years after Shakespeare, poor editors have certainly done a lot to mangle them, but I’m sure that Shakespeare himself, as a theater professional and partner in a theater company, was constantly messing around with the text.

Read more…

Comments: 8

Data Science for Business

What business leaders need to know about data and data analysis to drive their businesses forward.

DataScienceForBusinessCoverA couple of years ago, Claudia Perlich introduced me to Foster Provost, her PhD adviser. Foster showed me the book he was writing with Tom Fawcett, and using in his teaching at NYU.

Foster and Tom have a long history of applying data to practical business problems. Their book, which evolved into Data Science for Business, was different from all the other data science books I’ve seen. It wasn’t about tools: Hadoop and R are scarcely mentioned, if at all. It wasn’t about coding: business students don’t need to learn how to implement machine learning algorithms in Python. It is about business: specifically, it’s about the data analytic thinking that business people need to work with data effectively.

Data analytic thinking means knowing what questions to ask, how to ask those questions, and whether the answers you get make sense. Business leaders don’t (and shouldn’t) do the data analysis themselves. But in this data-driven age, it’s critically important for business leaders to understand how to work with the data scientists on their teams. Read more…

Comment

The web performance I want

Cruftifying web pages is not what Velocity is about.

There’s been a lot said and written about web performance since the Velocity conference. And steps both forward and back — is the web getting faster? Are developers using increased performance to add more useless gunk to their pages, taking back performance gains almost as quickly as they’re achieved?

I don’t want to leap into that argument; Arvind Jain did a good job of discussing the issues at Velocity Santa Clara and in a blog post on Google’s analytics site. But, I do want to discuss (all right, flame) about one issue that bugs me.

I see a lot of pages that appear to load quickly. I click on a site, and within a second, I have an apparently readable page.

“Apparently,” however, is a loaded word because a second later, some new component of the page loads, causing the browser to re-layout the page, so everything jumps around. Then comes the pop-over screen, asking if I want to subscribe or take a survey. (Most online renditions of print magazines: THIS MEANS YOU!). Then another resize, as another component appears. If I want to scroll down past the lead picture, which is usually uninteresting, I often find that I can’t because the browser is still laying out bits and pieces of the page. It’s almost as if the developers don’t want me to read the page. That’s certainly the effect they achieve.

Read more…

Comments: 4

On Batteries and Innovation

Despite reports of breakthroughs in battery technology, the hard problems of battery innovation remain hard.

Lately there’s been a spate of articles about breakthroughs in battery technology. Better batteries are important, for any of a number of reasons: electric cars, smoothing out variations in the power grid, cell phones, and laptops that don’t need to be recharged daily.

All of these nascent technologies are important, but some of them leave me cold, and in a way that seems important. It’s relatively easy to invent new technology, but a lot harder to bring it to market. I’m starting to understand why. The problem isn’t just commercializing a new technology — it’s everything that surrounds that new technology.

Take an article like Battery Breakthrough Offers 30 Times More Power, Charges 1,000 Times Faster. For the purposes of argument, let’s assume that the technology works; I’m not an expert on the chemistry of batteries, so I have no reason to believe that it doesn’t. But then let’s take a step back and think about what a battery does. When you discharge a battery, you’re using a chemical reaction to create electrical current (which is moving electrical charge). When you charge a battery, you’re reversing that reaction: you’re essentially taking the current and putting that back in the battery.

So, if a battery is going to store 30 times as much power and charge 1,000 times faster, that means that the wires that connect to it need to carry 30,000 times more current. (Let’s ignore questions like “faster than what?,” but most batteries I’ve seen take between two and eight hours to charge.) It’s reasonable to assume that a new battery technology might be able to store electrical charge more efficiently, but the charging process is already surprisingly efficient: on the order of 50% to 80%, but possibly much higher for a lithium battery. So improved charging efficiency isn’t going to help much — if charging a battery is already 50% efficient, making it 100% efficient only improves things by a factor of two. How big are the wires for an automobile battery charger? Can you imagine wires big enough to handle thousands of times as much current? I don’t think Apple is going to make any thin, sexy laptops if the charging cable is made from 0000 gauge wire (roughly 1/2 inch thick, capacity of 195 amps at 60 degrees C). And I certainly don’t think, as the article claims, that I’ll be able to jump-start my car with the battery in my cell phone — I don’t have any idea how I’d connect a wire with the current-handling capacity of a jumper cable to any cell phone I’d be willing to carry, nor do I want a phone that turns into an incendiary firebrick when it’s charged, even if I only need to charge it once a year.

Read more…

Comments: 4

Networked Things?

The magic starts when household devices can communicate over a network.

Well over a decade ago, Bill Joy was mocked for talking about a future that included network-enabled refrigerators. That was both unfair and unproductive, and since then, I’ve been interested in a related game: take the most unlikely household product you can and figure out what you could do if it were network-enabled. That might have been a futuristic exercise in 1998, but the future is here. Now. And there are few reasons we couldn’t have had that future back then, if we’d have the vision.

So, what are some of the devices that could be Internet-enabled, and what would that mean? We’re already familiar with the Nest; who would have thought even five years ago that we’d have Internet-enabled thermostats?

Read more…

Comments: 2

Phishing in Facebook’s Pond

Facebook scraping could lead to machine-generated spam so good that it's indistinguishable from legitimate messages.

A recent blog post inquired about the incidence of Facebook-based spear phishing: the author suddenly started receiving email that appeared to be from friends (though it wasn’t posted from their usual email addresses), making the usual kinds of offers and asking him to click on the usual links. He wondered whether this was a phenomenon and how it happened — how does a phisherman get access to your Facebook friends?

The answers are “yes, it happens” and “I don’t know, but it’s going to get worse.” Seriously, my wife’s name has been used in Facebook phishing. A while ago, several of her Facebook friends said that her email account had been hacked. I was suspicious; she only uses Gmail, and hacking Google isn’t easy, particularly with two-factor authentication. So, I asked her friends to send me the offending messages. It was obvious that they hadn’t come from my wife’s account; they were Yahoo accounts with her name but an unrecognizable email address, exactly what this blogger had seen.

How does this happen? How can a phisher discover your name and your Facebook friends? I don’t know, but Facebook is such a morass of weird and conflicting security settings that it’s impossible to know just how private or how public you are. If you’ve ever friended people you don’t know (a practice that remains entirely too common), and if you’ve ever enabled visibility to friends of friends, you have no idea who has access to your conversations.

Read more…

Comments: 5

Really Understanding Computation

Tom Stuart's new book will shed light on what you're really doing when you're programming.

It’s great to see that Tom Stuart’s Understanding Computation has made it out. I’ve been excited about this book ever since we signed it.

Understanding Computation started from Tom’s talk Programming with Nothing, which he presented at Ruby Manor in 2011. That talk was a tour-de-force: it showed how to implement a more-or-less complete programming system without using any libraries, methods, classes, objects, or even control structures, assignments, arrays, strings, or numbers. It was, literally, programming with nothing. And it was an eye-opener.

Shortly after I saw the conference video, I talked to Tom to ask if we could do more like this. And amazingly, the answer was “yes.” He was very interested in teaching the theory of computing through Ruby, using similar techniques. What does a program mean? What does it mean for something to be a program? How do we build languages that can handle ever more flexible abstractions? What kinds of problems can’t we solve computationally? It’s all here, and it’s all clearly demonstrated via Ruby code. It’s not code that you’d ever use in a real application (trust me, doing arithmetic without numbers, assignments, and control statements is ridiculously slow). But it is code that will expand your mind and leave you with a much better understanding of what you’re doing when you’re programming.

Comment

Understanding skepticism

Skepticism isn't a blanket rejection of data; it's central to understanding data.

I’d like to correct the impression, given by Derrick Harris on GigaOm, that I’m part of a backlash against “big data.”

I’m not skeptical about data or the power of data, but you don’t have to look very far or very hard to see data abused. The best people to be skeptical about the data, and to point out the abuse of data, are data scientists because they understand problems such as overfitting, bias, and much more.

Cathy O’Neil recently wrote about a Congressional hearing in which a teacher at a new data science program dodged some perceptive questions about whether he was teaching students to be skeptical about results, whether he was teaching students how to test whether their observations were real signals or just noise. Anyone who has worked with data knows that false correlations come cheaply, particularly when you’re working with a lot of data. But ducking that question is not the attitude we need.

Data is valuable. I see no end to the collection or analysis of data, nor should their be an and. But like any tool, we have to be careful about how we use it. Skepticism isn’t a blanket rejection of data; it’s central to understanding data. That’s precisely what makes “science” science.

And of all people, journalists should understand what skepticism means, even if they don’t have the technical tools to practice it.

Comments: 4

Burning the silos

The boundaries created by traditional management are just getting in the way of reducing product cycle times.

If I’ve seen any theme come up repeatedly over the past year, it’s getting product cycle times down. It’s not the sexiest or most interesting theme, but it’s everywhere: if it’s not on the front burner, it’s always simmering in the background.

Cutting product cycles to the bare minimum is one of the main themes of the Velocity Conference and the DevOps movement, where integration between developers and operations, along with practices like continuous deployment, allows web-native companies like Yahoo! to release upgrades to their web products many times a day. It’s no secret that many traditional enterprises are looking at this model, trying to determine what they can use or implement. Indeed, this is central to their long-term survival; companies as different from Facebook as GE and Ford are learning that they will need to become as agile and nimble as their web-native counterparts.

Integrating development and operations isn’t the only way to shorten product cycles. In his talk at Google IO, Braden Kowitz talked about shortening the design cycle: rather than build big, complete products that take a lot of time and money, start with something very simple and test it, then iterate quickly. This approach lets you generate and test lots of ideas, but be quick to throw away the ones that aren’t working. Rather than designing an Edsel, just to fail when the product is released, the shorter cycles that come from integrating product design with product development let you build iteratively, getting immediate feedback on what works and what doesn’t. To work like this, you need to break down the silos that separate engineers and designers; you need to integrate designers into the product team as early as possible, rather than at the last minute. Read more…

Comment: 1