Biohacking: The next great wave of innovation

The hacker culture that launched the computing revolution is now taking root in the bio space.

Genspace and Biocurious logosI’ve been following synthetic biology for the past year or so, and we’re about to see some big changes. Synthetic bio seems to be now where the computer industry was in the late 1970s: still nascent, but about to explode. The hacker culture that drove the development of the personal computer, and that continues to drive technical progress, is forming anew among biohackers.

Computers certainly existed in the ’60s and ’70s, but they were rare, and operated by “professionals” rather than enthusiasts. But an important change took place in the mid-’70s: computing became the domain of amateurs and hobbyists. I read recently that the personal computer revolution started when Steve Wozniak built his own computer in 1975. That’s not quite true, though. Woz was certainly a key player, but he was also part of a club. More important, Silicon Valley’s Homebrew Computer Club wasn’t the only one. At roughly the same time, a friend of mine was building his own computer in a dorm room. And hundreds of people, scattered throughout the U.S. and the rest of the world, were doing the same thing. The revolution wasn’t the result of one person: it was the result of many, all moving in the same direction.

Biohacking has the same kind of momentum. It is breaking out of the confines of academia and research laboratories. There are two significant biohacking hackerspaces in the U.S., GenSpace in New York and BioCurious in California, and more are getting started. Making glowing bacteria (the biological equivalent of “Hello, World!”) is on the curriculum in high school AP bio classes. iGem is an annual competition to build “biological robots.” A grassroots biohacking community is developing, much as it did in computing. That community is transforming biology from a purely professional activity, requiring lab coats, expensive equipment, and other accoutrements, to something that hobbyists and artists can do.

As part of this transformation, the community is navigating the transition from extremely low-level tools to higher-level constructs that are easier to work with. When I first leaned to program on a PDP-8, you had to start the computer by loading a sequence of 13 binary numbers through switches on the front panel. Early microcomputers weren’t much better, but by the time of the first Apples, things had changed. DNA is similar to machine language (except it’s in base four, rather than binary), and in principle hacking DNA isn’t much different from hacking machine code. But synthetic biologists are currently working on the notion of “standard biological parts,” or genetic sequences that enable a cell to perform certain standardized tasks. Standardized parts will give practitioners the ability to work in a “higher level language.” In short, synthetic biology is going through the same transition in usability that computing saw in the ’70s and ’80s.

Alongside this increase in usability, we’re seeing a drop in price, just as in the computer market. Computers cost serious money in the early ’70s, but the price plummeted, in part because of hobbyists: seminal machines like the Apple II, the TRS-80, and the early Macintosh would never have existed if not to serve the needs of hobbyists. Right now, setting up a biology lab is expensive; but we’re seeing the price drop quickly, as biohackers figure out clever ways to make inexpensive tools, such as the DremelFuge, and learn how to scrounge for used equipment.

And we’re also seeing an explosion in entrepreneurial activity. Just as the Homebrew Computer Club and other garage hackers led to Apple and Microsoft, the biohacker culture is full of similarly ambitious startups, working out of hackerspaces. It’s entirely possible that the next great wave of entrepreneurs will be biologists, not programmers.

What are the goals of synthetic biology? There are plenty of problems, from the industrial to the medical, that need to be solved. Drew Endy told me how one of the first results from synthetic biology, the creation of soap that would be effective in cold water, reduced the energy requirements of the U.S. by 10%. The holy grail in biofuels is bacteria that can digest cellulose (essentially, the leaves and stems of any plant) and produce biodiesel. That seems achievable. Can we create bacteria that would live in a diabetic’s intestines and produce insulin? Certainly.

But industrial applications aren’t the most interesting problems waiting to be solved. Endy is concerned that, if synthetic bio is dominated by a corporate agenda, it will cease to be “weird,” and won’t ask the more interesting questions. One Synthetic Aesthetics project made cheeses from microbes that were cultured from the bodies of people in the synthetic biology community. Christian Bok has inserted poetry into a microbe’s DNA. These are the projects we’ll miss if the agenda of synthetic biology is defined by business interests. And these are, in many ways, the most important projects, the ones that will teach us more about how biology works, and the ones that will teach us more about our own creativity.

The last 40 years of computing have proven what a hacker culture can accomplish. We’re about to see that again, this time in biology. And, while we have no idea what the results will be, it’s safe to predict that the coming revolution in biology will radically change the way we live — at least as radically as the computer revolution. It’s going to be an interesting and exciting ride.

Related:

tags: , , , , , , ,
  • http://genomecompiler.com/ Omri

    If you want to design/hack in biology – check out http://genomecompiler.com

    • http://www.facebook.com/profile.php?id=100000856417787 Gerd Moe-Behrens

      Really great software. Highly recommended!

  • http://www.facebook.com/profile.php?id=100000856417787 Gerd Moe-Behrens

    Great blog! If you like biohacking you might also like Leukippos – a synthetic biology lab in the cloud http://www.leukippos.org See also this blog in Nature:
    SpotOn http://www.nature.com/spoton/2012/05/tool-tales-leukippos-synthetic-biology-lab-in-the-cloud/

  • http://twitter.com/tamberg tamberg

    Not to forget http://hackteria.org/

  • Martin Haeberli

    Mike,

    I liked your note on the rise of synthetic biology, appreciate the links to other efforts, and agree that there are opportunities for big changes coming.

    That said:

    A) as much appreciation and respect as I have for Drew Endy (I worked with his erstwhile MIT colleague Randy Rettberg at Apple in the 1990s and at BBN in the 1970s), I don’t find the claim for actual or even achievable energy savings (10% of ALL US energy use) due to cold water soap to be plausible or reasonable. See the footnote below for an explanation; bottom line is the total energy cost of heating water in the US is only about 1.4% of all US energy consumption.

    B) I know a LOT more about Type 1 diabetes now than I did three years ago (our younger daughter was diagnosed in February 2010). Part of the challenge is not just producing insulin, but is managing the feedback loop between real-time blood-sugar levels and insulin demand. So, while I want to be optimistic about room for improvement and eventual cures for diabetes along the biological path, I suspect it will likely not be as straightforward as simply producing insulin in the gut.

    Best,

    Martin Haeberli
    —-
    footnote:
    —–
    According to, for example:
    http://www.rivernetwork.org/sites/default/files/The%20Carbon%20Footprint%20of%20Water-River%20Network-2009.pdf

    The TOTAL amount of energy used for water (including pumping, etc) is at least 521 MWh / year, which is equal to ~13% of all electricity consumed in the United States (as of 2007). So, the total electricity consumed per year in the US is about 4 TWh (TeraWatt-hours). Total US Energy consumption is about 27 TWh for the year (think, gas, oil, automobiles, airplanes, etc.)

    Of that 521 MWh / year, according to the same source, about 74%, or 378 MWh / year, is used for heating water (for all applications – bathing, laundry, dishwashing, etc…) (so about 1.4% of total US energy consumption).

  • Connor Dickie

    The Open Source, Web-Based GENtle 2.0 is also a great option for DNA hacking – check it out now at http://gentle.synbiota.com – or contribute to the code at: https://github.com/Synbiota/GENtle2

  • http://twitter.com/cjjackson Jeff Jackson

    What colleges, if any, are at the leading edge of synthetic bio?

  • DougHill25

    Mike,

    I find it very surprising that in this overview you don’t mention at all the potential risks of bio hacking. The prospect of unexpected consequences with this technology — and the expected consequences of bio terrorism or bio fanaticism — are huge. Doesn’t this concern you?

    Doug

    • Aaron Wolfson

      Apparently not…