"Hadoop" entries

Big Data systems are making a difference in the fight against cancer

Open source, distributed computing tools speedup an important processing pipeline for genomics data

As open source, big data tools enter the early stages of maturation, data engineers and data scientists will have many opportunities to use them to “work on stuff that matters”. Along those lines, computational biology and medicine are areas where skilled data professionals are already beginning to make an impact. I recently came across a compelling open source project from UC Berkeley’s AMPLab: ADAM is a processing engine and set of formats for genomics data.

Second-generation sequencing machines produce more detailed and thus much larger files for analysis (250+ GB file for each person). Existing data formats and tools are optimized for single-server processing and do not easily scale out. ADAM uses distributed computing tools and techniques to speedup key stages of the variant processing pipeline (including sorting and deduping):

Variant Calling Pipeline

Very early on the designers of ADAM realized that a well-designed data schema (that specifies the representation of data when it is accessed) was key to having a system that could leverage existing big data tools. The ADAM format uses the Apache Avro data serialization system and comes with a human-readable schema that can be accessed using many programming languages (including C/C++/C#, Java/Scala, php, Python, Ruby). ADAM also includes a data format/access API implemented on top of Apache Avro and Parquet, and a data transformation API implemented on top of Apache Spark. Because it’s built with widely adopted tools, ADAM users can leverage components of the Hadoop (Impala, Hive, MapReduce) and BDAS (Shark, Spark, GraphX, MLbase) stacks for interactive and advanced analytics.

Read more…


An Introduction to Hadoop 2.0: Understanding the New Data Operating System

Sneak peek at an upcoming tutorial at Strata Santa Clara 2014

By Rich Raposa

Apache Hadoop 2.0 represents a generational shift in the architecture of Apache Hadoop. With YARN, Apache Hadoop is recast as a significantly more powerful platform – one that takes Hadoop beyond merely batch applications to taking its position as a ‘data operating system’ where HDFS is the file system and YARN is the operating system.

YARN is a re-architecture of Hadoop that allows multiple applications to run on the same platform. With YARN, applications run “in” Hadoop, instead of “on” Hadoop:


Read more…

Comments: 2

How to analyze 100 million images for $624

There's a lot of new ground to be explored in large-scale image processing.

Jetpac is building a modern version of Yelp, using big data rather than user reviews. People are taking more than a billion photos every single day, and many of these are shared publicly on social networks. We analyze these pictures to discover what they can tell us about bars, restaurants, hotels, and other venues around the world — spotting hipster favorites by the number of mustaches, for example.

Treating large numbers of photos as data, rather than just content to display to the user, is a pretty new idea. Traditionally it’s been prohibitively expensive to store and process image data, and not many developers are familiar with both modern big data techniques and computer vision. That meant we had to cut a path through some thick underbrush to get a system working, but the good news is that the free-falling price of commodity servers makes running it incredibly cheap. Read more…

Comments: 3

Dealing with Data in the Hadoop Ecosystem

Hadoop, Sqoop, and ZooKeeper

Kathleen Ting (@kate_ting), Technical Account Manager at Cloudera, and our own Andy Oram (@praxagora) sat down to discuss how to work with structured and unstructured data as well as how to keep a system up and running that is crunching that data.

Key highlights include:

  • Misconfigurations consist of almost half of the support issues that the team at Cloudera is seeing [Discussed at 0:22]
  • ZooKeeper, the canary in the Hadoop coal mine [Discussed at 1:10]
  • Leaky clients are often a problem ZooKeeper detects [Discussed at 2:10]
  • Sqoop is a bulk data transfer tool [Discussed at 2:47]
  • Sqoop helps to bring together structured and unstructured data [Discussed at 3:50]
  • ZooKeep is not for storage, but coordination, reliability, availability [Discussed at 4:44]

You can view the full interview here:

Read more…


Databricks aims to build next-generation analytic tools for Big Data

A new startup will accelerate the maturation of the Berkeley Data Analytics Stack

Key technologists behind the Berkeley Data Analytics Stack (BDAS) have launched a company that will build software – centered around Apache Spark and Shark – for analyzing big data. Details of their product and strategy are sparse, as the company is operating in stealth mode. But through conversations with the founders of Databricks, I’ve learned that they’ll be building general purpose analytic tools that can leverage HDFS, YARN, as well as other components of BDAS.

It will be interesting to see how the team transitions to the corporate world. Their Series A funding round of $14M is being led by Andreessen Horowitz. The board will be composed of Ben Horowitz, Scott Shenker, Matei Zaharia, and Ion Stoica.

Read more…


Stream Processing and Mining just got more interesting

A general purpose stream processing framework from the team behind Kafka and new techniques for computing approximate quantiles

Largely unknown outside data engineering circles, Apache Kafka is one of the more popular open source, distributed computing projects. Many data engineers I speak with either already use it or are planning to do so. It is a distributed message broker used to store1 and send data streams. Kafka was developed by Linkedin were it remains a vital component of their Big Data ecosystem: many critical online and offline data flows rely on feeds supplied by Kafka servers.

Apache Samza: a distributed stream processing framework
Behind Kafka’s success as an open source project is a team of savvy engineers who have spent2 the last three years making it a rock solid system. The developers behind Kafka realized early on that it was best to place the bulk of data processing (i.e., stream processing) in another system. Armed with specific use cases, work on Samza proceeded in earnest about a year ago. So while they examined existing streaming frameworks (such as Storm, S4, Spark Streaming), Linkedin engineers wanted a system that better fit their needs3 and requirements:

Linkedin Samza

Read more…

Comments: 2

Working in the Hadoop Ecosystem

Working with big data and open source software

I recently sat down with Mark Grover (@mark_grover), a Software Engineer at Cloudera, to talk about the Hadoop ecosystem. He is a committer on Apache Bigtop and a contributor to Apache Hadoop, Hive, Sqoop, and Flume. He also contributed to O’Reilly Media’s Programming Hive title.

Key highlights include:

Read more…

Comments: 2

Running batch and long-running, highly available service jobs on the same cluster

Moving different workloads and frameworks onto the same collection of machines increases efficiency and ROI

As organizations increasingly rely on large computing clusters, tools for leveraging and efficiently managing compute resources become critical. Specifically, tools that allow multiple services and frameworks run on the same cluster can significantly increase utilization and efficiency. Schedulers1 take into account policies and workloads to match jobs with appropriate resources (e.g., memory, storage, processing power) in a large compute cluster. With the help of schedulers, end users begin thinking of a large cluster as a single resource (like “a laptop”) that can be used to run different frameworks (e.g., Spark, Storm, Ruby on Rails, etc.).

Multi-tenancy and efficient utilization translates into improved ROI. Google’s scheduler, Borg, has been in production for many years and has led to substantial savings2. The company’s clusters handle a variety of workloads that can be roughly grouped into batch (compute something, then finish) and services (web or infrastructure services like BigTable). Researchers recently examined traces from several Google clusters and observed that while “batch jobs” accounted for 80% of all jobs, “long service jobs” utilize 55-60% of resources.

There are other benefits of multi-tenancy. Being able to run analytics (batch, streaming) and long running services (e.g., web applications) on the same cluster significantly lowers latency3, opening up the possibility for real-time, analytic applications. Bake-offs can be done more effectively as competing tools, versions, and frameworks can be deployed on the same cluster. Data scientists and production engineers leverage the same compute resources, making it easier for teams to work together across the analytic lifecycle. An additional benefit is that data science teams learn to build products and services that factor in efficient utilization and availability.

Mesos, Chronos, and Marathon
Apache Mesos is a popular open source scheduler that originated from UC Berkeley’s AMPlab. Mesos is based on features in modern kernels for resource isolation (cgroups in Linux). It has been in production for a few years at Twitter4, airbnb5, and many other companies – AMPlab simulations showed Mesos comfortably handling clusters with 30K servers.

Read more…

Comments: 2

Interactive Big Data analysis using approximate answers

As data sizes continue to grow, interactive query systems may start adopting the sampling approach central to BlinkDB

Interactive query analysis for (Hadoop scale data) has recently attracted the attention of many companies and open source developers – some examples include Cloudera’s Impala, Shark, Pivotal’s HAWQ, Hadapt, CitusDB, Phoenix, Sqrrl, Redshift, and BigQuery. These solutions use distributed computing, and a combination of other techniques including data co-partitioning, caching (into main memory), runtime code generation, and columnar storage.

One approach that hasn’t been exploited as much is sampling. By this I mean employing samples to generate approximate answers, and speed up execution. Database researchers have written papers on approximate answers, but few working (downloadable) systems are actually built on this approach.

Approximate query engine from U.C. Berkeley’s Amplab
An interesting, open source database released yesterday0 uses sampling to scale to big data. BlinkDB is a massively-parallel, approximate query system from UC Berkeley’s Amplab. It uses a series of data samples to generate approximate answers. Users compose queries by specifying either error bounds or time constraints, BlinkDB uses sufficiently large random samples to produce answers. Because random samples are stored in memory1, BlinkDB is able to provide interactive response times:


Read more…

Comment: 1

Surfacing anomalies and patterns in Machine Data

Compelling large-scale data platforms originate from the world of IT Operations

I’ve been noticing that many interesting big data systems are coming out of IT operations. These are systems that go beyond the standard “capture/measure, display charts, and send alerts”. IT operations has long been a source of many interesting big data1 problems and I love that it’s beginning to attract the attention2 of many more data scientists and data engineers.

It’s not surprising that many of the interesting large-scale systems that target time-series and event data have come from ops teams: in an earlier post on time-series, several of the tools I highlighted came out of IT operations. IT operations involves monitoring many different hardware and software systems, a task that requires a variety of tools and which quickly leads to “metrics overload”. A partial list includes data captured from a wide range of application log files, network traffic, energy and power sources.

The volume of IT ops data has led to new tools like OpenTSDB and KairosDB – time series databases that leverage HBase and Cassandra. But storage, simple charts, and lookups are just the foundation of what’s needed. IT Ops track many interdependent systems, some of which might be correlated3. Not only are IT ops faced with highlighting “unknown unknowns” in their massive data sets, they often need to do so in near realtime.

Read more…