"tangible interaction" entries

Designing a future of immersive, tangible interaction

A look into a future in which physical and digital converge.

Editor’s note: This is an excerpt by Stephen P. Anderson from our recent book Designing for Emerging Technologies, a collection of works by several authors, curated and edited by Jon Follett. This excerpt is included in our curated collection of chapters from the O’Reilly Design library. Download a free copy of the Designing for the Internet of Things ebook here.

In the opening scenes of the Superman movie Man of Steel, one of the many pieces of Kryptonian technology we see are communication devices whose form and shape is constantly reshaping — a tangible, monochromatic hologram, if you will. Imagine thousands of tiny metal beads moving and reshaping as needed. Even though this makes for a nice bit of sci-fi eye candy, it’s also technology that MIT’s Tangible Media Group, led by professor Hiroshi Ishii, is currently exploring. In their own words, this work “explores the ‘Tangible Bits’ vision to seamlessly couple the dual world of bits and atoms by giving physical form to digital information.” They are creating objects (the “tangible bits”) that can change shape.

Even though the team’s vision of “radical atoms” is still in the realm of the hypothetical, the steps they are taking to get there are no less inspiring. Their latest example of tangible bits is a table that can render 3D content physically, so users can interact with digital information in a tangible way. In one of their video demonstrations, a remote participant in a video conference moves his hands, and in doing so reshapes the surface of a table, rolling a ball around. The technology is at once both awe-inspiring and crude; the wooden pegs moving up and down to define form aren’t that unlike the pin art toys we see marketed to children. Having said that, it’s easy to imagine something like this improving in fidelity over time, in the same way that the early days of monochromatic 8-bit pixels gave way to retina displays and photorealistic images. Read more…