"synthetic biology" entries

Connecting the microcosmos and the macro world

Christina Agapakis explores the microbiological matrix that binds everything from pecorino to people.

human_cheese

Cheese from the Selfmade project.

This is part of our investigation into synthetic biology and bioengineering. For more, download the new BioCoder Fall 2014 issue here.

Good luck trying to jam Christina Agapakis into any kind of vocational box. Her CV cites disparate accomplishments as a scientist, writer, and artist — and teacher. Imparting highly technical information in a compelling, even revelatory way seems part of, well, her DNA. She can’t not do it. Moreover, her career arc represents a syncretic impulse that characterizes her general outlook on life.

“A friend is starting a group called Doctors without Disciplinary Borders, and I’m joining it,” says Agapakis. “It captures the spirit of my work pretty well.”

Agapakis is first and foremost a synthetic biologist and a microbiologist, but she’s not particularly happy with the way the synthetic biology narrative has played out. She thinks biocoding is inadequately explained by its practitioners and deeply misunderstood by the lay public, raising excessive expectations and misunderstandings about what synthetic biology can do. The discipline’s message would be better communicated, she believes, if metaphors grounded in biology rather than computers were employed. Read more…

Comment

A glowing trend

Glowing plants disrupt the GMO narrative.

GlowingPlantProjectEditor’s note: this is an excerpt from the latest edition of BioCoder; it is republished here with permission. Get your free copy of BioCoder Fall 2014 here.

Unlike many of his generational peers, Glowing Plant chief scientific officer Kyle Taylor was never put off by genetically modified organism (GMO) crops. On the contrary: Kansas-born and bred, cutting-edge agriculture was as natural to him as the torrid summers and frigid winters of the southern plains.

“GMO corn first hit the market while I was still in high school,” says Taylor, “and I have to admit I was fascinated by it. It was Roundup resistant, meaning that it you could spray it with the most commonly used herbicide in commercial agriculture and it would remain unaffected. I found that really profound, a breakthrough.” Read more…

Comment: 1

Looking for the next generation of biocoders

Natalie Kuldell on the hard work of bringing biocoding to the classroom.

Freshman_BiologySynthetic biology is poised to change everything from energy development to food production to medicine — but there’s a bottleneck looming. How fast things develop depends on the number of people developing things. Let’s face it: there aren’t that many biocoders. Not in the universities, not in industry, not in the DIY sector. Not enough to change the world, at any rate. We have to ramp up.

And that means we first must train teachers and define biocoding curricula. Not at the university level — try secondary, maybe even primary schools. That, of course, is a challenge. To get kids interested in synthetic biology, we have to do just that: get them interested. More to the point, get them jacked. Biocoding is incredibly exciting stuff, but that message isn’t getting across.

“Students think science and engineering is removed from daily life,” says Natalie Kuldell, an instructor of biological engineering at MIT. “We have to get them engaged, and connected to science and engineering — more specifically, bioengineering — in meaningful ways.”

Read more…

Comment: 1

Synthetic biology on the cusp

Oliver Medvedik on the grassroots future of biohacking and the problems with government overreach.

BioCoder image plants in dish with tweezersWhither thou goest, synthetic biology? First, let’s put aside the dystopian scenarios of nasty modified viruses escaping from the fermentor Junior has jury-rigged in his bedroom lab. Designing virulent microbes is well beyond the expertise and budgets of homegrown biocoders.

“Moreover, it’s extremely difficult to ‘improve’ on the lethality of nature,” says Oliver Medvedik, a visiting assistant professor at The Cooper Union for the Advancement of Science and Art and the assistant director of the Maurice Kanbar Center for Biomedical Engineering. “The pathogens that already exist are more legitimate cause for worry.” Read more…

Comments: 2

Designing real vegan cheese

Synthetic biology surely can get weirder — but this is a great start.

real_vegan_cheese_screenshot

I don’t think I will ever get tired of quoting Drew Endy’s “keep synthetic biology weird.” One of my favorite articles in the new issue of Biocoder is on the Real Vegan Cheese project.

If you’ve ever tried any of the various vegan cheese substitutes, they are (to put it kindly) awful. The missing ingredient in these products is the milk proteins, or caseins. And of course you can’t use real milk proteins in a vegan product.

But proteins are just organic compounds that are produced, in abundance, by any living cell. And synthetic biology is about engineering cell DNA to produce whatever proteins we want. That’s the central idea behind the Real Vegan Cheese project: can we design yeast to produce the caseins we need for cheese, without involving any animals? There’s no reason we can’t. Once we have the milk proteins, we can use traditional processes to make the cheese. No cows (or sheep, or goats) involved, just genetically modified yeast. And you never eat the yeast; they stay behind at the brewery.

Read more…

Comments: 5

Robots in the lab

Hacking lab equipment to make it programmable is a good first step toward lab automation.

ModularScienceAutomatedCentrifuge

An automated centrifuge at Modular Science — click here for instructions to hack one yourself.

In the new issue of BioCoder, Peter Sand writes about Hacking Lab Equipment. It’s well worth a read: it gives a number of hints about how standard equipment can be modified so that it can be controlled by a program. This is an important trend I’ve been watching on a number of levels, from fully robotic labs to much more modest proposals, like Sand’s, that extend programmability even to hacker spaces and home labs.

In talking to biologists, I’m surprised at how little automation there is in research labs. Automation in industrial labs, the sort that process thousands of blood and urine samples per hour, yes: that exists. But in research labs, undergrads, grad students, and post-docs spend countless hours moving microscopic amounts of liquid from one place to another. Why? It’s not science; it’s just moving stuff around. What a waste of mental energy and creativity.

Lab automation, though, isn’t just about replacing countless hours of tedium with opportunities for creative thought. I once talked to a system administrator who wrote a script for everything, even for only a simple one-liner. (Might have been @yesthattom, I don’t remember.) This practice is based on an important insight: writing a script documents exactly what you did. You don’t have to think about, “oh, did I add the f option on that rm -r / command?”; you can just look. If you need to do the same thing on another system, you can reproduce what you did exactly.

Read more…

Comments: 3

Announcing BioCoder issue 3

Advances in biology and biotechnology are driving us in exciting new directions — be part of the revolution!

We’re excited about the third issue of BioCoder, O’Reilly’s newsletter about the revolution in biology and biotechnology. In the first article of our new issue, Ryan Bethencourt asks the question “What does Biotechnology Want?” Playing with Kevin Kelly’s ideas about how technological development drives human development, Bethencourt asks about the directions in which biotechnology is driving us. We’re looking for a new future with significant advances in agriculture, food, health, environmental protection, and more.

That future will be ours — if we choose to make it. Bethencourt’s argument (and Kelly’s) is that we can’t not choose to make it. Yes, there are plenty of obstacles: the limits to our understanding of biology and genetics, the inadequate tools we have for doing research, the research institutions themselves, and even fear of the future. We’ll overcome these obstacles; indeed, if Bethencourt is right, and biology is our destiny, we have no choice but to overcome these obstacles. The only question is whether you’re part of the revolution or not.
Read more…

Comment

Biohacking and the problem of bioterrorism

Natural bioterrorism might be the bigger threat, and the value of citizens educated in biosciences can't be overstated.

You don’t get very far discussing synthetic biology and biohacking before someone asks about bioterrorism. So, let’s meet the monster head-on.

I won’t downplay the possibility of a bioterror attack. It’s already happened. The Anthrax-contaminated letters that were sent to political figures just after 9/11 were certainly an instance of bioterrorism. Fortunately (for everyone but the victims), they only resulted in five deaths, not thousands. Since then, there have been a few “copycat” crimes, though using a harmless white powder rather than Anthrax spores.

While I see bioterror in the future as a certainty, I don’t believe it will come from a hackerspace. The 2001 attacks are instructive: the spores were traced to a U.S. biodefense laboratory. Whether or not you believe Bruce Ivins, the lead suspect, was guilty, it’s clear that the Anthrax spores were developed by professionals and could not have been developed outside of a professional setting. That’s what I expect for future attacks: the biological materials, whether spores, viruses, or bacteria, will come from a research laboratory, produced with government funding. Whether they’re stolen from a U.S. lab or produced overseas: take your pick. They won’t come from the hackerspace down the street. Read more…

Comments: 3

Academic biology and its discontents

Disaffected grad students and postdocs increasingly turn to DIYbio to do work that makes a difference.

When we started BioCoder, we assumed that we were addressing the DIYbio community: interested amateur hobbyists and experimenters without much formal background in biology, who were learning and working in independent hackerspaces.

A couple of conversations have made me question that assumption — not that DIYbio exists; it’s clearly a healthy and growing movement, with new labs and hackerspaces starting in most major cities. But there’s another group mixed in with the amateurs, with a distinctly different set of capabilities and goals. DIYbio doesn’t mean exactly what we thought it did.

That group is what I broadly call “disaffected grad students and postdocs.” They’ve got training, loads of it. But they’ve spent the last few years working in a laboratory under a faculty member, furthering that faculty member’s agenda. They have their own ideas and their own research projects, but they can’t work on them within the context of academic biology. They’re funded by a grant, and the grant will only pay for certain things. And, as Anthony Di Franco points out in “Superseding Institutions in Science and Medicine” (in the current issue of BioCoder), grants are primarily given to people who already know what they’re going to find, and that is not how you get truly innovative and creative research. Read more…

Comments: 2

Cheese, art, and synthetic biology

Christina Agapakis discusses the intersection of art and science in the new edition of BioCoder.

We’ve published the second issue of BioCoder! In this interview excerpt from the new edition, Christina Agapakis talks with Katherine Liu about the intersection of art and science, and the changes in how we think about biotechnology. It’s one of many reasons we’re excited about this new issue. Download it, read it, and join the biotechnology revolution!

Katherine Liu: What can art and design teach us about biology and synthetic biology?

Christina Agapakis: That’s a great question. There are two different ways you can think about it: first as a way to reach different groups of people and have a different kind of conversation or debate around biotechnology. The second way that you could think about it is more interesting to me as a scientist because I think using art and design helps us ask different questions and think about problems and technological solutions in different ways. To make a good technology, we need to be aware of both the biological and the cultural issues involved, and I think the intersection of art and design with science and technology helps us see those connections better.

Read more…

Comment