Jon Bruner

Jon Bruner is a data journalist who approaches questions that interest him by writing and coding. Before coming to O'Reilly, where he is editor-at-large, he was data editor at Forbes Magazine. He lives in New York, where he can occasionally be found at the console of a pipe organ.

Solid 2015: submit your proposal

O'Reilly's Solid Conference, on IoT and the intersection between real and virtual, will return to San Francisco on June 23-25, 2015.

Last May, we engaged in something of an experiment when Joi Ito and I presented Solid, our conference about the intersection between software and the physical world. We drew the program as widely as possible and invited demos from a broad group of large and small companies, academic researchers, and artists. The crowd that came — more than 1,400 people — was similarly broad: a new interdisciplinary community that’s equally comfortable in the real and virtual worlds started to, well, solidify.

I’m delighted to announce that Solid is returning. The next Solid will take place on June 23-25, 2015, at Fort Mason in San Francisco. It’ll be bigger, with more space and a program spread across three days instead of two, but we’re taking care to maintain and nourish the spirit of the original event. That begins with our call for proposals, which opens today. Some of our best presentations in May came from community members we hadn’t yet met who blew away our program committee with intriguing proposals. We’re committed to discovering new luminaries and giving them a chance to speak to the community. If you’re working on interesting things, I hope you’ll submit a proposal.

We’re expecting a full house at this year’s event, so we’ve opened up ticket reservations today as well — you can reserve your ticket here, and we’ll hold your spot for seven days once registration opens early next year. Read more…

Comment

Saul Griffith: build soft, not solid

Soft, or compliant, robots can be safer, lighter, more efficient, and easier to control.

As we get ready to launch the 2015 version of Solid, our conference about the intersection between software and the physical world, I’ve been revisiting some lessons from Solid 2014.

For instance, Saul Griffith, founder and principal scientist at Other Lab, advises that many machines would do well to skip solidity altogether. Soft, or compliant, robots can be safer, lighter, more efficient, and easier to control. In his work with compliant robots, Griffith has managed to substitute intelligent controls for mass—replacing atoms with bits.

Watch Griffith’s entire Solid 2014 talk below. If you’d like to be notified when the Solid 2015 call for proposals goes up and when tickets become available, be sure to sign up for the O’Reilly IoT+ newsletter.

For more videos from Solid 2014, visit our Solid YouTube playlist.

Comment

The next industrial revolution

It's all about software, but it's a little harder than that.

Power_Mast_Framework_Markus_Grossalber_Flickr

If you Google “next industrial revolution,” you’ll find plenty of candidates: 3D printers, nanomaterials, robots, and a handful of new economic frameworks of varying exoticism. (The more generalized ones tend to sound a little more plausible than the more specific ones.)

The phrase came up several times at a track I chaired during our Strata + Hadoop World conference on big data. The talks I assembled focused on the industrial Internet — the merging of big machines and big data — and generally concluded that in the next industrial revolution, software will take on the catalytic role previously played by the water wheel, steam engine, and assembly line.

The industrial Internet is part of the new hardware movement, and, like the new hardware movement, it’s more about software than it is about hardware. Hardware has gotten easier to design, manufacture, and distribute, and it’s gotten more powerful and better connected, backed up with a big-data infrastructure that’s been under construction for a decade or so. Read more…

Comment: 1

Intoxicating machines

The revolutionary thing about desktop machines is that they'll make experimentation easier.

Carvey_Screenshot_cropped

Cropped screenshot of Carvey. Source: the Carvey Kickstarter campaign.

“Mr. Frankel, who started this program, began to suffer from the computer disease that anybody who works with computers now knows about,” [Richard] Feynman later explained. “The trouble with computers is you play with them.”
— George Dyson, describing the beginning of the Manhattan Project’s computing effort in Turing’s Cathedral.

I’ve been reading George Dyson’s terrific history of the early development of the digital computer, and the quote above struck me. Even when they were little more than room-sized adding machines that had to be painstakingly programmed with punchcards, computers offered an intoxicating way to experiment. Most programmers can probably remember their first few scripts and the thrilling feeling of performing millions of operations in seconds. Computers let us take some abstracted human process and repeat it quickly, at almost no cost, with easy modification along the way. Read more…

Comment: 1

Inside Solid: what won’t drones do?

How Moore's Law applies to drones — a backchannel meditation on drone limitations.

prime-air_high-resolution02Extrapolation is great fun — especially over technology, where Moore’s Law has conditioned us to expect exponentially falling costs and fast adoption. Applied to drones, extrapolation might lead us to conclude that they’ll fill the skies soon, delivering anything we want on demand. They are, after all, rapidly getting cheaper and smarter, and drone-related announcements get tons of press.

So, where will the drones stop? A few of us meditated on the limitations of drones last week on news that Facebook plans to use them to provide Internet connections to those who don’t have them, and on DHL’s announcement that it would begin making deliveries by drone to the island of Juist, in the North Sea. An edited excerpt of our exchange follows. Read more…

Comments: 3

Stop hacking random stuff. It’s getting trivial.

Once we acknowledge nearly everything is insecure, we can engage in a more nuanced discussion about security.

Keep_Gate_Closed_mt2ri_FlickrI was gratified to read Dave Aitel’s rant about junk hacking last week [via Peter Lewis and abridged below]:

“Yes, we get it. Cars, boats, buses, and those singing fish plaques are all hackable and have no security. Most conferences these days have a whole track called ‘Junk I found around my house and how I am going to scare you by hacking it.’ That stuff is always going to be hackable whetherornotyouarethecalvalry.org.

“Yes, there is Junk in your garage, and you can hack it, and if
you find someone else who happens to have that exact same Junk, you can probably hack that, too, but maybe not, because testing is hard.

“Cars are the pinnacle of junk hacking, because they are meant to be in your garage. Obviously there is no security on car computers. Nor (and I hate to break the suspense) *will there ever be*. Yes, you can connect a device to my midlife crisis car and update the CPU of the battery itself with malware, which can in theory explode my whole car on the way to BJJ. I personally hope you don’t. But I know it’s possible the same way I know it’s possible to secretly rewire my toaster oven to overcook my toast every time even when I put it on the lowest setting, driving me slowly but surely insane.

“So in any case, enough with the Junk Hacking, and enough with being amazed when people hack their junk.”

Read more…

Comment: 1

Inside Solid: who will build the “god platform” for the Internet of Things?

Everyone is racing to build the topmost layer for home automation.

Grid_by_tanakawho_Flickr_crop

Everyone’s racing to build the “god platform” for the Internet of Things: the highest, most generalized layer of intelligence and user interface that ties together connected devices and web services.

It’s tempting to look for analogy in mobile phone platforms, where Apple was initially dominant and now enjoys an extremely lucrative and influential minority position against Android. There are some crucial differences, though. For starters, adoption won’t be quite as easy; domestic appliances last for a long time, and nothing consumers have seen yet makes connected laundry seem appealing enough to justify early replacement of a washing machine. And even in cases where replacement is relatively easy, the grandest promises entail stitching everything into a seamless system — replacing just the easy stuff can seem pretty lame. Read more…

Comments: 18

Talking to big machines

What “design beyond the screen” means for the industrial Internet.

GE_turbine_3_2-103

GE’s 3.2-103 wind turbine analyzes tens of thousands of data points every second and communicates seamlessly with neighboring turbines, service technicians, and operators.

One of the core ideas we set out to explore at Solid is “design beyond the screen” — the idea that, as software moves into physical devices, our modes of interaction with it will change. It’s an easy concept to understand in terms of consumer electronics: the Misfit Shine activity tracker has a processor and memory just like a computer (along with sensors and LEDs), but you don’t control it with a keyboard and monitor; you interact with it by attaching it to your clothing and letting it gather data about your movement. At its most elegant, design beyond the screen minimizes interaction and frees humans to spend their mental energy on things that humans are good at, like creative thinking and interacting with each other.

Design beyond the screen is a much broader and more transformative concept than just that, though: it encompasses changes in the relationships between humans and machines and between machines and other machines. Good design beyond the screen makes interaction more fluid and elevates both people and machines to do their best work. The impact of good design beyond the screen could be huge, and could extend well beyond consumer electronics into heavy industry and infrastructure. Read more…

Comment: 1

Why PayPal jumped the software-hardware gap

A software company reaches into the physical world with hardware.

PayPal is a software company, but when I met with Josh Bleecher Snyder, director of software engineering at PayPal, it was to talk about hardware. He’s leading the development of Beacon, PayPal’s new hands-free payment platform. At its heart is a finger-size stick that uses Bluetooth Low Energy to connect with mobile phones and confirm identity.

Paypal’s move into hardware extends its software into the physical world — a key idea behind our Solid Conference. What was once a system confined to screens and keyboards is now part of a new set of interactions in brick-and-mortar stores.

Beacon is part of a vast PayPal stack, and Bleecher Snyder’s team solved problems with a blend of hardware and software thinking — writing code in Go that was efficient enough for Beacon’s processor to be underclocked and avoid overheating, and to anticipate attacks on PayPal’s service that might come from compromised hardware. His entire system hews to PayPal’s “don’t be creepy” mantra by quickly and permanently discarding data that isn’t used in transactions. Read more…

Comment

The IT-OT convergence

The key to brilliant factories lies in the combination of information technology and operations systems, says GE's CIO.

Solid is about the intersection of real and virtual — the idea that, through sensors, networks, and intelligent machines, information can move fluidly between software and the physical world. It’s easy to see the technical implications of that intersection — thermostats that adjust themselves and cars that can drive autonomously — but there’s also a crucial management implication as well. Just as design can be automated and optimized if it’s encapsulated in software, a company’s operations can be made much more efficient if they’re modeled digitally before being executed.

Jamie Miller, senior vice president and chief information officer at General Electric, calls that “IT meets OT” and sees the combination changing her industry. “When you take these two disciplines that used to be separate and combine them, you can start to approach engineering and design differently, operate workflow differently, make factories brilliant.” It’s a philosophy that GE uses internally and builds into the products it sells.

Companies like GE have a lot of data — digital designs for manufactured parts, human-resources records, work orders from customers, service manuals — and this data tends to converge on human operators. A field technician might receive a work order to fix a wind turbine, visit the machine, consult documentation, call a colleague for specialized advice, order a replacement part, and finally make the repair. Read more…

Comments: 3