ENTRIES TAGGED "manufacturing"

What’s a tech company, anyway?

Talk of the "tech sector" is out of date. Every company is a tech company.

John_Deere_Field_Connect

John Deere’s Field Connect system logs soil moisture data from probes installed in customer fields and transmits the data to a website for customers to access remotely.

Uber has encountered a series of challenges that are notionally unfamiliar to the current generation of tech companies: wrongful-death lawsuits, rent-seeking by an entrenched industry, regulatory scrutiny from local bureaucrats, worker protests. The company admitted to having disrupted a competitor’s operations by calling its cars, then canceling. No matter how explicitly it warns about surge pricing, riders accustomed to a certain way of booking a car ride object.

There’s an established industry that charges people for rides in cars, and it’s been reduced to a set of straightforward points of competition: price, car quality, ease of booking, and — treacherously for Uber and uncharacteristically for “tech companies” in general — the burly and distasteful accumulation of political clout before municipal taxi commissions. Read more…

Comments: 2

The crowdfunding conundrum

Miscalculating funding thresholds can sink your startup.

There is widespread consensus that crowdfunding is a boon, an egalitarian means for bringing products and services to market without relying on banks, venture capitalists, or established financial angels. Myriad platforms now allow entrepreneurs and folks with a little (or a lot) of cash to get together without the red tape and angst that so often accompanies the soliciting and procuring of startup funds.

But that doesn’t mean crowdfunding is a panacea. In fact, observes Scott Miller, CEO and co-founder of Dragon Innovation, Inc., crowdfunding platforms have an Achilles heel: an inability to deliver hardware.

“Over the past year or 18 months, we’ve seen a pretty disturbing trend in crowdfunding,” Miller says. “A lot of campaigns meet their thresholds, but they ultimately don’t deliver the goods. That’s usually not due to fraud — it’s largely because many of the people who launch these nascent companies don’t understand hardware. They may want to drive people to their campaign by posting a low threshold, or they may not understand the expense involved in getting a prototype to high-volume production, but in either event, they wind up with insufficient capital. So, when the time comes to actually manufacture their product, they don’t have enough money, and they can’t recover. Hundreds of millions of dollars have been lost as a result.” Read more…

Comments: 2

Building a Solid World

A multitude of signals points to the convergence of software and the physical world.

Building a Solid World by Mike Loukides and Jon BrunerThis is an excerpt from Building a Solid World, a free paper by Mike Loukides and myself about the convergence of software and the physical world.

Our new Solid conference is about the “intersection of software and hardware.” But what does the intersection of software and hardware mean? We’re putting on a conference because we see something distinctly new happening.

Roughly a year ago, we sat around a table in Sebastopol to survey some interesting trends in technology. There were many: robotics, sensor networks, the Internet of Things, the Industrial Internet, the professionalization of the Maker movement, hardware-oriented startups. It was a confusing picture, until we realized that these weren’t separate trends. They’re all more alike than different—they are all the visible result of the same underlying forces. Startups like FitBit and Withings were taking familiar old devices, like pedometers and bathroom scales, and making them intelligent by adding computer power and network connections. At the other end of the industrial scale, GE was doing the same thing to jet engines and locomotives. Our homes are increasingly the domain of smart robots, including Roombas and 3D printers, and we’ve started looking forward to self-driving cars and personal autonomous drones. Every interesting new product has a network connection—be it WiFi, Bluetooth, Zigbee, or even a basic form of piggybacking through a USB connection to a PC. Everything has a sensor, and devices as dissimilar as an iPhone and a Kinect are stuffed with them. We spent 30 or more years moving from atoms to bits; now it feels like we’re pushing the bits back into the atoms. And we realized that the intersection of these trends—the conjunction of hardware, software, networking, data, and intelligence—was the real “news,” far more important than any individual trend. Read more…

Comment: 1

Podcast: the democratization of manufacturing

A conversation with Chris Anderson, Nick Pinkston, and Jie Qi

Manufacturing is hard, but it’s getting easier. In every stage of the manufacturing process–prototyping, small runs, large runs, marketing, fulfillment–cheap tools and service models have become available, dramatically decreasing the amount of capital required to start building something and the expense of revising and improving a product once it’s in production.

In this episode of the Radar podcast, we speak with Chris Anderson, CEO and co-founder of 3D Robotics; Nick Pinkston, a manufacturing expert who’s working to make building things easy for anyone; and Jie Qi, a student at the MIT Media Lab whose recent research has focused on the factories of Shenzhen.

Along the way we talk about the differences between Tesla’s auto plant and its previous incarnation as the NUMMI plant; the differences between on-shoring, re-shoring and near-shoring; and how the innovative energy of Kickstarter and the Maker movement can be brought to underprivileged populations.

Many of these topics will come up at Solid, O’Reilly’s new conference about the intersection of software and the physical world. Solid’s call for proposals open through December 9. We’re planning a series of Solid meet-ups, plant tours, and books about the collision of real and virtual; if you’ve got an idea for something the series should explore, please reach out!

Subscribe to the O’Reilly Radar Podcast through iTunesSoundCloud, or directly through our podcast’s RSS feed.

Comment

Software, hardware, everywhere

Software and hardware are moving together, and the combined result is a new medium.

Real and virtual are crashing together. On one side is hardware that acts like software: IP-addressable, controllable with JavaScript APIs, able to be stitched into loosely-coupled systems—the mashups of a new era. On the other is software that’s newly capable of dealing with the complex subtleties of the physical world—ingesting huge amounts of data, learning from it, and making decisions in real time.

The result is an entirely new medium that’s just beginning to emerge. We can see it in Ars Electronica Futurelab’s Spaxels, which use drones to render a three-dimensional pixel field; in Baxter, which layers emotive software onto an industrial robot so that anyone can operate it safely and efficiently; in OpenXC, which gives even hobbyist-level programmers access to the software in their cars; in SmartThings, which ties Web services to light switches.

The new medium is something broader than terms like “Internet of Things,” “Industrial Internet,” or “connected devices” suggest. It’s an entirely new discipline that’s being built by software developers, roboticists, manufacturers, hardware engineers, artists, and designers. Read more…

Comment: 1

$20,000 and a trip to Shenzhen

An incubator that leads to an accelerator that leads to China's high-volume manufacturers.

Manufacturing is rapidly becoming more accessible to people whose expertise lies elsewhere. The change is most apparent at the small scale, where it’s become easy to order prototypes made on high-quality 3D printers and electronics in small batches from domestic factories. High-volume Chinese manufacturing has been tougher to get into.

A new incubator launching today, and led by our former O’Reilly colleague Brady Forrest, is aimed at lowering the barriers to getting physical goods manufactured fast and in high volumes. Highway1 will prepare nascent hardware companies to enter the accelerator pipeline of the Sino-Irish supply-chain giant PCH International. It offers portfolio companies up to $20,000 and a hardware crash-course that includes a trip to the factories of Shenzhen. Forrest says his curriculum will eventually be made public (minus the China junket, of course).

The successful companies that progress to PCH’s accelerator will have PCH as both an investor and supply-chain manager, essentially drawing from the same network that supplies some of Silicon Valley’s bestsellers.

Forrest put it to me this way: “There is no Amazon Web Services for hardware, but we’re the closest thing to it.”

Comment

Radar podcast: the Internet of Things, PRISM, and defense technology that goes civilian

A strange ad from a defense contractor leads us to talk about technology transfer, and Edward Snowden chooses an unnecessarily inflammatory refuge.

On this week’s podcast, Jim Stogdill, Roger Magoulas and I talk about things that have been on our minds lately: the NSA’s surveillance programs, what defense contractors will do with their technology as defense budgets dry up, and a Californian who isn’t doing what you think he’s doing with hydroponics.

The odd ad in The Economist that caught Jon's attention, from Dassault Systemes.

The odd ad in The Economist that caught Jon’s attention, from Dassault Systemes. Does this suggest that contractors, contemplating years of American and European austerity, are looking for ways to market defense technologies to the civilian world?

Because we’re friendly Web stewards, we provide links to the more obscure things that we talk about in our podcasts. Here they are.

If you enjoyed this podcast, be sure to subscribe on iTunes, on SoundCloud, or directly through our podcast RSS feed.

.powerpress_links {display:none;} .powerpress_player {display:none;}

Comments: 5

Where will software and hardware meet?

Software is adding more and more value to machines. Could it completely commoditize them?

I’m a sucker for a good plant tour, and I had a really good one last week when Jim Stogdill and I visited K. Venkatesh Prasad at Ford Motor in Dearborn, Mich. I gave a seminar and we talked at length about Ford’s OpenXC program and its approach to building software platforms.

The highlight of the visit was seeing the scale of Ford’s operation, and particularly the scale of its research and development organization. Prasad’s building is a half-mile into Ford’s vast research and engineering campus. It’s an endless grid of wet labs like you’d see at a university: test tubes and robots all over the place; separate labs for adhesives, textiles, vibration dampening; machines for evaluating what’s in reach for different-sized people.

Prasad explained that much of the R&D that goes into a car is conducted at suppliers–Ford might ask its steel supplier to come up with a lighter, stronger alloy, for instance–but Ford is responsible for integrative research: figuring out how to, say, bond its foam insulation onto that new alloy.

In our more fevered moments, we on the software side of things tend to foresee every problem being reduced to a generic software problem, solvable with brute-force computing and standard machinery. In that interpretation, a theoretical Google car operating system–one that would drive the car and provide Web-based services to passengers–could commoditize the mechanical aspects of the automobile. Read more…

Comments: 2

Investigating the growth and influence of professional Makers

We're exploring the Maker movement's role in manufacturing, business and the economy.

The growth of the Maker movement has been nothing if not amazing. We’ve had more than 100,000 people at Maker Faire in San Francisco, and more than 50,000 at the New York event, with mini-Maker Faires in many other cities. Arduino is almost a household word, along with Raspberry Pi. Now that O’Reilly has spun out Maker Media as an independent company, we look forward to the continued success of these events; they’re signs of an important cultural shift, a rejection of a prefabricated, shrink-and bubble-wrap economy that hasn’t served us well. The Make movement has proven that there are many people who want the joy of creating, whether it’s a crystal radio, a custom head for a Pez dispenser, or glowing e coli.

But the Maker movement is not just about hobbyists. We’ve seen a lot in print about the re-shoring of American manufacturing, the return of the manufacturing jobs that had been exported to China and the Far East over the past few decades. One of the questions we’re asking at O’Reilly is what the Maker movement has to do with the return of manufacturing. If the return of manufacturing just means lots of low-level industrial jobs, paying barely more than minimum wage and under near-slavery conditions, that doesn’t sound desirable. That also doesn’t sound possible, at least to me: whatever else one might say about the cost of doing business in the U.S., North America just doesn’t have the sheer concentrations of people needed to make a Foxconn.

Of course, many of the writers who’ve noted the return of manufacturing have also noted that it’s returning in a highly automated way: instead of people running around a warehouse, you’ll have Kiva robots doing the running. Instead of skilled machinists operating milling machines, you’ll have highly automated computer controlled machines with a small number of humans to test the parts and make sure they’re operating properly. This vision is more plausible — even likely — but while it promises continued employment for the engineers who make the robots, it certainly doesn’t solve any problems in the labor market.

But just as small business has long been the cornerstone of the U.S. economy, one wonders whether or not small manufacturing, driven by “professional Makers,” could be the foundation for the resurgence of manufacturing in the U.S. Read more…

Comments: 5

Listening for tired machinery

Cheap sensors and sophisticated software keep expensive machines running smoothly

Software is making its way into places where it hasn’t usually been before, like the cutting surfaces of very fast, ultra-precise machine tools.

A high-speed milling machine can run at 42,000 RPM as it fabricates high-quality machine components within tolerances of a few microns. Excessive wear in that environment can lead to a failure that ruins an expensive part, but it’s difficult to use physical means to detect wear on cutting surfaces: human operators can’t see it and detailed microscopic inspections are costly. The result is that many operators simply replace parts on a pre-determined schedule — every two months, perhaps — that ends up being overly conservative.

The researchers’ milling machine, shown with sensors near the cutting device. (Source: X. Li, M.J. Er, H. Ge, O. P. Gan, S. Huang, L.Y. Zhai, S. Linn, Amin J. Torabi, “Adaptive Network Fuzzy Inference System and Support Vector Machine Learning for Tool Wear Estimation in High Speed Milling Processes,” Proceedings of the 38th Annual Conference of the IEEE Industrial Electronics Society, pp. 2809-2814, 2012.)

Enter software: in a paper delivered to the IEEE’s Industrial Electronics Society in Montreal last Thursday*, a group of researchers from Singapore propose a way to use low-cost sensors along with machine learning algorithms to accurately predict wear on machine parts — a technique that could cut costs for manufacturers by lengthening the lifespan of machine parts while avoiding failures.

The group’s demonstration is a promising illustration of the industrial Internet, which promises to bring more intelligence to machines by linking them to networks and integrating them with sophisticated software. Techniques from areas like machine learning, which can be computationally intensive, can thus be available in monitoring parts as small and common as cutting surfaces in milling machines.

Read more…

Comment: 1