ENTRIES TAGGED "Solid"

Materials that make up our world

Digital manufacturing is the future — reusable, composable, and rapid from top to bottom.

lego_blocks

Editor’s note: This is part two of a two-part series reflecting on the O’Reilly Solid Conference from the perspective of a data scientist. Normally we wouldn’t publish takeaways from an event held nearly two months ago, but these insights were so good we thought they needed to be shared.

In mid-May, I was at Solid, O’Reilly’s new conference on the convergence of hardware and software. In Part one of this series, I talked about the falling cost of bringing a hardware start-up to market, about the trends leading to that drop, and a few thoughts on how that relates to the role of a data scientist.

I mentioned two phrases that I’ve heard Jon Bruner say, in one form or another. The first, “merging of hardware and software,” was covered in the last piece. The other is the “exchange between the virtual and actual.” I also mentioned that I think the material future of physical stuff is up for grabs. What does that mean, and how do those two sentiments tie together? Read more…

Comment

Talking to big machines

What “design beyond the screen” means for the industrial Internet.

GE_turbine_3_2-103

GE’s 3.2-103 wind turbine analyzes tens of thousands of data points every second and communicates seamlessly with neighboring turbines, service technicians, and operators.

One of the core ideas we set out to explore at Solid is “design beyond the screen” — the idea that, as software moves into physical devices, our modes of interaction with it will change. It’s an easy concept to understand in terms of consumer electronics: the Misfit Shine activity tracker has a processor and memory just like a computer (along with sensors and LEDs), but you don’t control it with a keyboard and monitor; you interact with it by attaching it to your clothing and letting it gather data about your movement. At its most elegant, design beyond the screen minimizes interaction and frees humans to spend their mental energy on things that humans are good at, like creative thinking and interacting with each other.

Design beyond the screen is a much broader and more transformative concept than just that, though: it encompasses changes in the relationships between humans and machines and between machines and other machines. Good design beyond the screen makes interaction more fluid and elevates both people and machines to do their best work. The impact of good design beyond the screen could be huge, and could extend well beyond consumer electronics into heavy industry and infrastructure. Read more…

Comment

Governments can bridge costs and services gaps with sensor networks

Government sensor networks can streamline processes, cut labor costs, and improve services.

Contributing authors: Andre Bierzynski and Kevin Chrapaty.

Screenshot from the Waze app.

What if government agencies followed in the footsteps of Waze, a community-driven mobile phone app that collects location data through GPS and allows its users to report accidents and traffic jams, providing real-time, location-specific traffic alerts?

It’s not news to anyone who works in government that we live in a time of ever-tighter budgets and ever-increasing needs. The 2013 federal shutdown only highlighted this precarious situation: government finds it increasingly difficult to summon the resources and manpower needed to meet its current responsibilities, yet faces new ones after each Congressional session.

Sensor networks are an important emerging technology that some areas of government already are implementing to bridge the widening gap between the demand to reduce costs and the demand to improve services. The Department of Defense, for instance, uses RFID chips to monitor its supply chain more accurately, while the U.S. Geological Survey employs sensors to remotely monitor the bacterial levels of rivers and lakes in real time. Additionally, the General Services Administration has begun using sensors to measure and verify the energy efficiency of “green” buildings (PDF), and the Department of Transportation relies on sensors to monitor traffic and control traffic signals and roadways. All of which is productive, but more needs to be done. Read more…

Comment

Embracing hardware data

Looking at the collision of hardware and software through the eyes of a data scientist.

Raspberry Pi Board. Via Wikimedia Commons

Many aspects of a hardware device can be liberally prototyped. A Raspberry Pi (such as the one seen above) can function as a temporary bridge before ARM circuit boards are put into place.

Editor’s note: This is part one of a two-part series reflecting on the O’Reilly Solid Conference from the perspective of a data scientist. Normally we wouldn’t publish takeaways from an event held nearly two months ago, but these insights were so good we thought they needed to be shared.

In mid-May, I was at Solid, O’Reilly’s new conference on the convergence of hardware and software. I went in as something close to a blank slate on the subject, as someone with (I thought) not very strong opinions about hardware in general.

The talk on the grapevine in my community, data scientists who tend to deal primarily with web data, was that hardware data was the next big challenge, the place that the “alpha geeks” were heading. There are still plenty of big problems left to solve on the web, but I was curious enough to want to go check out Solid to see if I was missing out on the future. I don’t have much experience with hardware — beyond wiring up LEDs as a kid, making bird houses in shop class in high school, and mucking about with an Arduino in college. Read more…

Comment: 1

Four short links: 25 June 2014

Mobile Hacks, Advertising Returns, Solid Writeup, and Predicted Future

  1. Researchers Find and Decode the Spy Tools Governments Use to Hijack Phones (Wired) — I’m fascinated to learn there’s an Italian company making (and selling) the mobile phone rootkits that governments use.
  2. On the Near Impossibility of Measuring the Returns on Advertising (PDF) — Statistical evidence from the randomized trials is very weak because the individual-level sales are incredibly volatile relative to the per capita cost of a campaign—a “small” impact on a noisy dependent variable can generate positive returns. (via Slate)
  3. Reflections on Solid Conference — recap of the conference, great for those of us who couldn’t make it. “Software is eating the world…. Hardware gives it teeth.” – Renee DiResta
  4. Cybernation: The Silent Conquest (1962)[When] computers acquire the necessary capabilities…speeded-up data processing and interpretation will be necessary if professional services are to be rendered with any adequacy. Once the computers are in operation, the need for additional professional people may be only moderate [...] There will be a small, almost separate, society of people in rapport with the advanced computers. These cyberneticians will have established a relationship with their machines that cannot be shared with the average man any more than the average man today can understand the problems of molecular biology, nuclear physics, or neuropsychiatry. Indeed, many scholars will not have the capacity to share their knowledge or feeling about this new man-machine relationship. Those with the talent for the work probably will have to develop it from childhood and will be trained as intensively as the classical ballerina. (via Simon Wardley)
Comment

NASA’s Smart SPHERES robot teams up with Project Tango

The Tango smartphone will help SPHERES navigate space station modules.

I work in the Intelligent Robotics Group (IRG) at NASA Ames Research Center, and when we got the chance to collaborate with our next-door neighbor Google on their new Project Tango, we knew exactly what to do: we’re sending the Project Tango smartphone to the International Space Station, where it will set our robots free.

SPHERES-Tango-600x600
Smart SPHERES with a space-ready Project Tango phone. Photo courtesy of NASA.

Read more…

Comment

Welcome back, Weblandians

The collision of software and hardware has broken down the barriers between the digital and physical worlds.

Note: this post is a slightly hydrated version of my Solid keynote. To get it out in 10 minutes, I had to remove a few ideas and streamline it a bit for oral delivery; this is the full version.

In 1995, Nicolas Negroponte told us to forget about the atoms and focus on the bits. I think “being digital” was probably an intentional overstatement, a provocation to shove our thinking off of its metastable emphasis on the physical, to open us up to the power of the purely digital. And maybe it worked too well, because a lot of us spent two decades plumbing every possibility of digital-only technologies and digital-only businesses.

Bot-Dolly_Iris_Demo

Solid attendees watch a Bot & Dolly demonstration of their Iris robot. Photo by O’Reilly.

By then, technology had bifurcated into two streams of hardware and software that rarely converged outside of the data center, and for most of us, unless we were with a firm the size of Sony, with a huge addressable market, hardware was simply outside the scope of our entrepreneurial ambitions. It was our platform, but rarely our product. The physical world was for other people to worry about. We had become by then the engineers of the ephemeral, the plastic, and the immaterial. And in the depth of our immersion into the virtual and digital, we became, it seems, citizens of Weblandia (and congregants of the Church of Disruption).

But pendulums always swing back. Read more…

Comments: 2

Why PayPal jumped the software-hardware gap

A software company reaches into the physical world with hardware.

PayPal is a software company, but when I met with Josh Bleecher Snyder, director of software engineering at PayPal, it was to talk about hardware. He’s leading the development of Beacon, PayPal’s new hands-free payment platform. At its heart is a finger-size stick that uses Bluetooth Low Energy to connect with mobile phones and confirm identity.

Paypal’s move into hardware extends its software into the physical world — a key idea behind our Solid Conference. What was once a system confined to screens and keyboards is now part of a new set of interactions in brick-and-mortar stores.

Beacon is part of a vast PayPal stack, and Bleecher Snyder’s team solved problems with a blend of hardware and software thinking — writing code in Go that was efficient enough for Beacon’s processor to be underclocked and avoid overheating, and to anticipate attacks on PayPal’s service that might come from compromised hardware. His entire system hews to PayPal’s “don’t be creepy” mantra by quickly and permanently discarding data that isn’t used in transactions. Read more…

Comment

The IT-OT convergence

The key to brilliant factories lies in the combination of information technology and operations systems, says GE's CIO.

Solid is about the intersection of real and virtual — the idea that, through sensors, networks, and intelligent machines, information can move fluidly between software and the physical world. It’s easy to see the technical implications of that intersection — thermostats that adjust themselves and cars that can drive autonomously — but there’s also a crucial management implication as well. Just as design can be automated and optimized if it’s encapsulated in software, a company’s operations can be made much more efficient if they’re modeled digitally before being executed.

Jamie Miller, senior vice president and chief information officer at General Electric, calls that “IT meets OT” and sees the combination changing her industry. “When you take these two disciplines that used to be separate and combine them, you can start to approach engineering and design differently, operate workflow differently, make factories brilliant.” It’s a philosophy that GE uses internally and builds into the products it sells.

Companies like GE have a lot of data — digital designs for manufactured parts, human-resources records, work orders from customers, service manuals — and this data tends to converge on human operators. A field technician might receive a work order to fix a wind turbine, visit the machine, consult documentation, call a colleague for specialized advice, order a replacement part, and finally make the repair. Read more…

Comments: 3

The automation of design

Physical and biological design are about to get much more digital, says Autodesk’s CTO.

Autodesk_titanium_chair

A titanium chair designed through iterative generation and optimization by Autodesk software. Photo courtesy of Autodesk and The Living.

One of the core ideas behind our Solid Conference is that software can replace physical complexity, and that it’s getting easier for it to do so because the relationship between the physical and virtual worlds is becoming more fluid. Input tools like 3D scanners and computer vision software, and output tools like CNC machines and 3D printers are essentially translators between digital and physical. They make it possible to extract information from physical objects, compute on it, transform it, combine it with other data, and then “rematerialize” it.

I recently spoke with Autodesk CTO Jeff Kowalski about this convergence between physical and digital, and its impact on design. In his view, computers are about to go from mere drafting tables to full partners in the design process. They’ll automate the tedious cycle of trial and error, and leave designers to guide aesthetics and experience. “Decades ago, someone came up with the term ‘computer-aided design,’ but what we’ve had up to now is really computer-aided documentation,” he says. “Design has been accomplished solely in the head of the designer, and then the computer is used to document the outcome.” Read more…

Comment: 1